
AIKO: AI-POWERED KNOWLEDGE ORGANIZER

B.Tech. PROJECT

Submitted to Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur
in Partial Fulfillment of the

Requirements for the Degree of BACHELOR OF TECHNOLOGY in
COMPUTER SCIENCE AND ENGINEERING

By
Aditya S. Deshmukh (ID 2021016600840367)
Devansh S. Parapalli (ID 2021016600817392)
Kaustubh D. Warade (ID 2021016600880071)
Yashasvi B. Thool (ID 2021016600869734)

Guide
Dr. Devchand J. Chaudhari

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GOVERNMENT COLLEGE OF ENGINEERING NAGPUR

2024-2025

AIKO: AI-POWERED KNOWLEDGE ORGANIZER

B.Tech. PROJECT

Submitted to Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur
in Partial Fulfillment of the

Requirements for the Degree of BACHELOR OF TECHNOLOGY in
COMPUTER SCIENCE AND ENGINEERING

By
Aditya S. Deshmukh (ID 2021016600840367)
Devansh S. Parapalli (ID 2021016600817392)
Kaustubh D. Warade (ID 2021016600880071)
Yashasvi B. Thool (ID 2021016600869734)

Guide
Dr. Devchand J. Chaudhari

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GOVERNMENT COLLEGE OF ENGINEERING NAGPUR

2024-2025

GOVERNMENT COLLEGE OF ENGINEERING NAGPUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled, “AIKO: AI-POWERED KNOWLEDGE

ORGANIZER” which is being submitted herewith for the award of B. Tech, is the result

of the work completed by (1) Aditya S. Deshmukh (2) Devansh S. Parapalli (3) Kaustubh

D. Warade (4) Yashasvi B. Thool under the guidance of Dr. Devchand J. Chaudhari.

(Dr. Devchand J. Chaudhari)

Guide

(Dr. Latesh G. Malik)

Head of Department

(Dr. Rewatkumar P. Borkar)

Principal

i

DECLARATION

We hereby declare that the project entitled, “AIKO: AI-POWERED KNOWL-

EDGE ORGANIZER” was carried out and written by us under the guidance of

Dr. Devchand J. Chaudhari, Assistant Professor, Department of Computer Science

and Engineering, Government College of Engineering, Nagpur. This work has not

been previously formed the basis for the award of any degree or diploma or certifi-

cate nor has been submitted elsewhere for the award of any degree or diploma.

Date:

Place: Nagpur

(1) Aditya S. Deshmukh

University Enrollment Number: 2021016600840367

(2) Devansh S. Parapalli

University Enrollment Number: 2021016600817392

(3) Kaustubh D. Warade

University Enrollment Number: 2021016600880071

(4) Yashasvi B. Thool

University Enrollment Number: 2021016600869734

ii

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to all those

who have contributed to the successful completion of this project.

We are deeply indebted to our project guide, Dr. Devchand J. Chaudhari,

for his exemplary mentorship and unwavering support throughout this endeavor.

His profound knowledge, insightful guidance, and constructive feedback have

been instrumental in shaping our research and overcoming technical challenges.

We extend our heartfelt appreciation to Dr. Latesh G. Malik, Head of the

Department of Computer Science and Engineering at Government College of Engi-

neering Nagpur, for providing us with the necessary resources and infrastructure.

Our sincere appreciation to Dr. Rewatkumar P. Borkar, Princi-

pal, Government College of Engineering Nagpur, for fostering an envi-

ronment of academic excellence and innovation within our institution.

We are grateful to our peers who have contributed significantly to this project.

Special thanks goes to Ishad Pande, for his expertise in UI/UX Design; Aashish

Tawale, Aastha Dongare, Atharva Shrikhande, Ayush Mahalle, Kinjal Tiwari, Nidhish

Waghmare, Malhar Paradkar, Sakshi Nimje, Shivam Morey and Tejaswini Mankar

for their meticulous proofreading and constructive feedback; AIKO Test Users Group,

for their invaluable feedback and suggestions during AIKO’s development. Their tech-

nical acumen and collaborative spirit have greatly enhanced the quality of our work.

We would also like to acknowledge the support of the entire Computer

Science and Engineering department, whose faculty members have been a con-

stant source of knowledge and inspiration throughout our academic journey.

iii

ABSTRACT

AIKO (AI-powered Knowledge Organizer) is an innovative system designed to

address the challenges of information overload and fragmented knowledge management

in the digital age. Leveraging advanced artificial intelligence techniques, including

natural language processing and machine learning, AIKO provides a comprehensive

solution for integrating, processing, and retrieving information contained within diverse

modalities. The main motivations for the project were the lack of a centralized personal

knowledge management system capable of handling multi-modal data and the need

for a more efficient and easy to use system for knowledge organization and retrieval.

AIKO has been developed using the latest technologies such as GenAI and

large Language Models for content processing with the waterfall model of software

development. The system features an innovative modular architecture, increasing

resiliency and scalability. A new framework for language model integration has been

developed as part of this project. A plugin architecture allows for easy expansion

of data source connectors, enabling seamless integration with various platforms.

AIKO was developed as a proof-of-concept to demonstrate the feasibility of a person-

alized knowledge management system. A core observation was the ability of AIKO

to demonstrably improve the efficiency of knowledge management and retrieval

tasks for users. The system’s efficacy is further demonstrated through the results

obtained from a user survey. Key results for AIKO include a 12-fold improvement

in search and retrieval times along with a satisfaction score of 4.67 out of 5.

AIKO highlights the need to improve organizational efficacy and productivity

by utilization of newer technologies. AIKO also has the potential to revolutionize the

way individuals and organizations manage and access information, providing a more

efficient and personalized knowledge management system. Processing of video and

varied binary formats is a future direction for AIKO’s vast processing capabilities.

iv

CONTENTS

Chapter

No.

Title Page

No.

Certificate i

Declaration ii

Acknowledgement iii

Abstract iv

List of Figures x

List of Tables xi

Nomenclature xii

1. Introduction 1

1.1 Problem Statement 1

1.2 Objectives 1

1.2.1 Expected Outcomes 3

1.3 Organization Of Report 3

2. Review of Literature 5

2.1 Overview of Existing Knowledge Management Systems 5

2.2 Gaps in Current Solutions 6

2.3 Summary 8

2.3.1 Information Overload and Cognitive Burden 8

2.3.2 Fragmented Data Across Platforms 8

2.3.3 Inefficiencies in Information Retrieval 9

2.3.4 Lack of Personalization 9

2.3.5 Security Concerns 9

2.3.6 Inadequate Contextual Understanding 9

v

3. Theoretical Framework 10

3.1 Large Language Models 10

3.1.1 Fundamental Architecture and Principles 10

3.1.2 How LLMs Process and Generate Text 12

3.1.3 Theoretical Capabilities and Limitations 13

3.2 Vector Embeddings 13

3.2.1 Mathematical Concepts 14

3.2.2 Dimensionality Reduction Techniques 14

3.2.3 Similarity Measures in Vector Spaces 15

3.3 Information Retrieval 16

3.3.1 Classical IR Models 17

3.3.2 Neural IR Models 17

3.3.3 Relevance Ranking Algorithms 18

3.3.4 Evaluation Metrics 20

3.4 Natural Language Processing 21

3.4.1 Linguistic Theories 21

3.4.2 Fundamental NLP Tasks 22

3.4.3 Semantic and Syntactic Analysis 23

3.5 Database Theory 24

3.5.1 Relational Database Concepts 24

3.5.2 NoSQL and Vector Databases 25

3.5.3 ACID Properties and Eventual Consistency 27

3.6 Web Application Architecture 28

3.6.1 Client-Server Model 28

3.6.2 RESTful Architecture Principles 29

vi

3.6.3 Server-side vs. Client-side vs. Hybrid Rendering 30

3.7 Security and Authentication 31

3.7.1 Cryptographic Principles 32

3.7.2 OAuth 2.0 Framework 33

3.7.3 Zero Trust Security Model 34

3.8 Software Engineering Principles 35

3.8.1 Design Patterns 35

3.8.2 SOLID Principles 36

3.8.3 Microservices Architecture Theory 37

4. Methodology 39

4.1 High-Level Overview 39

4.1.1 Data Ingestion and Integration Subsystem 39

4.1.2 Information Processing Subsystem 39

4.1.3 Knowledge Base and Indexing Subsystem 39

4.1.4 Search and Retrieval Engine 40

4.1.5 User and Data Management Subsystem 40

4.1.6 User Interface and Experience Subsystem 40

4.2 System Interactions 40

4.3 Development Approach 41

4.3.1 Requirements Gathering 41

4.3.2 Design and Architecture 42

4.3.3 Development Phase 42

4.3.4 Testing and Quality Assurance 44

4.3.5 Deployment and Maintenance 44

4.3.6 Project Budget 45

vii

4.4 Data Layer Implementation 46

4.4.1 Users 46

4.4.2 Entities 46

4.4.3 Messages 47

4.5 Backend Development 47

4.5.1 Novel LLM Communication Stack 48

4.5.2 Plugin Architecture 48

4.6 Backend Technologies and Frameworks 49

4.6.1 🤗 Transformers 49

4.6.2 Uvicorn and Gunicorn 50

4.6.3 FastAPI 51

4.6.4 Pinecone 52

4.6.5 Other Libraries and Frameworks 52

4.6.6 NLP-Enabled Content Processor 53

4.6.7 Search Engine 54

4.7 Frontend Development 54

4.7.1 User Interface and Experience Design 54

4.8 Frontend Technologies and Frameworks 55

4.8.1 TypeScript 55

4.8.2 Svelte 56

4.8.3 Vite 57

4.8.4 Tailwind CSS 58

4.8.5 Prettier 58

4.8.6 Playwright 58

4.8.7 Other Libraries and Frameworks 59

viii

5. Results and Discussions 61

5.1 Project Walkthrough 61

5.1.1 Landing Page 61

5.1.2 Authentication Page 62

5.1.3 Dashboard 62

5.1.4 Profile Page 63

5.1.5 Add File Page 64

5.1.6 Search Page 65

5.1.7 Entity View Page 66

5.1.8 Chat Page 68

5.2 Results 69

5.2.1 Unified Personalized Knowledge Repository 69

5.2.2 Enhanced Information Retrieval System 69

5.2.3 Improved Knowledge Management Capabilities 69

5.2.4 Documentation and Self-Hostable Instance 70

6. Conclusion 71

6.1 Summary 71

6.2 Conclusions 71

6.3 Future Work 72

References 73

Appendix A: LLM System Prompts

Appendix B: Database Schema

Publications

ix

List of Figures

Figure

No.

Title Page

No.

3.1 Transformer Architecture 11

4.1 System Interactions 41

5.1 Landing Page 61

5.2 Authentication Page 62

5.3 Dashboard 62

5.4 Profile Page 64

5.5 Add File Page 64

5.6 Add File Page - File Selected 65

5.7 Add File Page - Upload Success 65

5.8 Search Page - With Query 66

5.9 Search Results 66

5.10 Entity View Page 67

5.11 Preview Document 67

5.12 Delete Document 68

5.13 Chat Page 68

5.14 Chat Page - With Query 69

x

List of Tables

Table

No.

Title Page

No.

4.1 Monthly Operating Costs 45

4.2 One-time Costs 45

4.3 Total Project Budget 45

xi

NOMENCLATURE

• ACID: Atomicity, Consistency, Isolation, Durability

• AES - Advanced Encryption Standard

• AI: Artificial Intelligence

• AIKO: AI-powered Knowledge Organizer

• ANCE: Approximate Nearest Neighbor Negative Contrastive Estimation

• API: Application Programming Interface

• ASGI - Asynchronous Server Gateway Interface

• BIM: Binary Independence Model

• Blake2 - A cryptographic hash function

• CD: Continuous Delivery/Deployment

• CDN - Content Delivery Network

• CDSSM: Convolutional Deep Structured Semantic Model

• CI: Continuous Integration

• CNN - Convolutional Neural Network

• CSR - Client-Side Rendering

• CSRF: Cross-Site Request Forgery

• CSS: Cascading Style Sheets

• CUDA - Compute Unified Device Architecture

• DCP - Distributed Computing Protocol

• DIP - Dependency Inversion Principle

• DIS: Data Ingestion Service

• DOM: Document Object Model

• DPR: Dense Passage Retrieval

• DRMM: Deep Relevance Matching Model

• DSSM: Deep Structured Semantic Model

• DUET: Dual Embedding Text Matching

• EC2 - Elastic Compute Cloud (Amazon EC2)

• ECC - Elliptic Curve Cryptography

xii

• ES Module - ECMAScript Module

• GPU - Graphics Processing Unit

• HMM - Hidden Markov Model

• HMR - Hot Module Replacement

• HTTP: Hypertext Transfer Protocol

• IAM - Identity and Access Management

• IDE: Integrated Development Environment

• IPS: Information Processing Service

• IR: Information Retrieval

• JAX - Just After Execution (a Python library for machine learning)

• JSON: JavaScript Object Notation

• JWT: JSON Web Token

• K-NRM: Kernel-based Neural Ranking Model

• LLM: Large Language Model

• LSA: Latent Semantic Analysis

• LSP - Liskov Substitution Principle

• MBps: Megabytes per second

• MFA - Multi-Factor Authentication

• ML: Machine Learning

• NER - Named Entity Recognition

• NLP: Natural Language Processing

• OAuth: Open Authorization

• ONNX - Open Neural Network Exchange

• PCA: Principal Component Analysis

• PDF - Portable Document Format

• R2 - Cloudflare R2 (object storage service)

• RAM: Random Access Memory

• RDBMS: Relational Database Management System

• REST: Representational State Transfer

xiii

• RNN - Recurrent Neural Network

• RSA - Rivest-Shamir-Adleman (a public-key cryptosystem)

• S3 - Simple Storage Service (Amazon S3)

• SAML: Security Assertion Markup Language

• SDD: Software Design Document

• SEO - Search Engine Optimization

• SRP - Single Responsibility Principle

• SRS: Software Requirements Specification

• SSD: Solid State Drive

• SSG - Static Site Generator

• SSR - Server-Side Rendering

• t-SNE: t-Distributed Stochastic Neighbor Embedding

• TorchScript - A way to create serializable and optimizable models from PyTorch code

• UI - User Interface

• UMAP: Uniform Manifold Approximation and Projection

• vRAM: Video Random Access Memory

• VSM: Vector Space Model

• WSGI - Web Server Gateway Interface

• XAI: Explainable AI

xiv

CHAPTER 1
INTRODUCTION

1.1 Problem Statement

The exponential increase in digital information has resulted in a growing

challenge for individuals and organizations to manage, access, and utilize data

efficiently. The issue manifests in two major forms: information overload and

fragmented knowledge management. The overwhelming volume of data across

multiple platforms, including emails, cloud storage, and social media, burdens

users, making it difficult to prioritize and retain important information. Newer

information often overshadows previous data, leading to a cognitive overload.

In addition, knowledge is fragmented, scattered across disparate platforms,

devices, and formats, leading to inefficiencies in retrieval. Users experience

delays in locating relevant information, as search mechanisms struggle with

unstructured data, often resulting in reduced relevance and accuracy in search

results. Current systems lack adequate contextual understanding and fail to process

or link pieces of information cohesively. The lack of personalization further

exacerbates the problem, as users’ unique needs and preferences in organizing

and accessing information are insufficiently catered to by existing systems.

These factors collectively lead to reduced productivity, increased cog-

nitive stress, and missed opportunities for leveraging knowledge effectively.

1.2 Objectives

The AIKO project aimed to address the challenges highlighted with the follow-

ing primary objectives.

• Data Integration and Normalization

The project’s design called for implementing a unified data layer capable of

handling heterogeneous data sources, ensuring seamless integration of information

from various platforms. Development of robust APIs for efficient data ingestion was

planned, allowing accommodation of diverse data formats and sources. A centralized

1

hub for consolidated information storage and management was envisioned, providing

a comprehensive solution for organizations dealing with fragmented data ecosystems.

• Advanced Search and Retrieval Mechanisms

Development of a high-performance search engine optimized for large-scale

data retrieval was a core objective. Implementation of advanced indexing techniques

and Natural Language Processing (NLP) algorithms was planned to enable sophisti-

cated semantic search capabilities. The focus on efficient cross-platform information

retrieval aimed to significantly enhance data accessibility, allowing users to quickly

locate and utilize relevant information across diverse data sources and formats.

• Security Implementation

Robust security measures were prioritized through the design of a

multi-layered security architecture. Plans included implementation of state-

of-the-art encryption protocols for data at rest and in transit, ensuring

comprehensive data protection. Integration of OAuth 2.0 and SAML for au-

thentication and authorization was intended, providing a secure framework

for user access and data handling that met modern cybersecurity standards.

• Automated Synchronization

Addressing the challenges of maintaining data consistency across mul-

tiple platforms, the project aimed to design a sophisticated publish-subscribe

system facilitating real-time updates. AIKO’s system was to be comple-

mented by advanced conflict resolution algorithms capable of managing

multi-source data updates efficiently. The overarching goal was to ensure

automatic data consistency maintenance across diverse platforms and de-

vices, minimizing data discrepancies and enhancing overall system reliability.

• Intuitive User Experience

An exceptional user experience was targeted through the creation of a cross-plat-

form accessible frontend interface. Plans included implementation of collaborative fil-

tering algorithms and user preference customization features, allowing for a highly per-

sonalized interaction with the system. The focus on enhancing user engagement through

2

tailored interfaces and information feeds sought to optimize the efficiency and effective-

ness of knowledge management processes for individual users and organizations alike.

1.2.1 Expected Outcomes

The implementation of AIKO was expected to yield several significant out-

comes, including:

• Enhanced Information Management

Users were expected to experience a significant reduction in the

time required to locate and retrieve information, with an expected im-

provement of 60% in efficacy. The system was expected to decrease

the cognitive load on users through automated organization, allowing them

to focus on more critical tasks rather than information management.

• Operational Efficiency

Users were expected to benefit significantly from the system’s

streamlined data ingestion and retrieval processes. AIKO’s deduplica-

tion and organizational capabilities were expected to improve col-

laborative workflows as well as accelerate decision-making processes.

• System Performance

AIKO was expected to maintain high availability and scalability to support

the constantly growing needs of the users. The system’s real-time capabilities

were expected to ensure data consistency across multiple devices and platforms.

• Security & Privacy

AIKO was expected to provide robust security features, ensur-

ing data privacy and integrity both at rest and in transit. Ac-

cess control and threat detection mechanisms were expected to safe-

guard sensitive information from unauthorized access or data breaches.

1.3 Organization Of Report

The report is structured to provide a comprehensive overview of the AIKO

project, detailing the theoretical foundations, system design and architecture, imple-

mentation methodology, project management aspects and future research directions.

3

Chapter 1 provides a detailed introduction to the project, outlining the

problem statement, relevance of AIKO, initial goals, and the report’s structure.

Chapter 2 dives into the review of existing knowledge management sys-

tems, highlighting the features, limitations, and relevance to AIKO’s development.

Chapter 3 delves into the theoretical framework under-

pinning AIKO, discussing the system’s design and architec-

ture, implementation methodology, and project management aspects.

Chapter 4 provides an in-depth analysis of the implementation method-

ology adopted for AIKO, outlining the system design, architectural deci-

sions, development process, tools, technologies, and frameworks utilized.

Chapter 5 discusses AIKO’s user interface design and

the results obtained from AIKO’s development and implementation.

Chapter 6 evaluates the project goals, analyzes AIKO’s strengths

and limitations, and suggests future research and development directions.

Subsequent Appendices provide additional information, including links

to online versions of the project and its documentation, system

prompts used for LLMs and the database schema used in AIKO.

The report is concluded with the attachment of the project’s publications.

4

CHAPTER 2
REVIEW OF LITERATURE

2.1 Overview of Existing Knowledge Management Systems

The following section provides an overview of existing knowledge management

systems, highlighting their features, limitations, and relevance to AIKO’s development.

Mem.ai [1] offered a platform focused on content organization and generation,

but it limited its capabilities by operating exclusively within its own ecosystem.

The platform lacked support for importing external documents, which restricted its

versatility. The closed environment potentially allowed for more robust integration

of its core features but limited its use cases for broader information retrieval

needs. Its strength was in tightly controlling the content it processed, but was a

major drawback when it came to working with external data sources. The AIKO

project team found the lack of external documents to be a significant limitation

in the context of developing a comprehensive knowledge management system.

Brain Assistant [2] was a browser-centric solution utilizing open-source models.

It supported file processing but was confined to text-based documents. Additionally,

the platform required manual file uploads, which added extra steps for the user

when dealing with diverse data types. Being able to be accessed only through the

browser reduced Brain Assistant’s usability in environments where offline access or

other modes of interaction were necessary. Brain Assistant lacked the versatility of

other solutions due to its limited file type support, and it did not provide robust

options for multimedia content. The AIKO project team found the lack of multi-modal

support to be a significant drawback in the context of the Indian ecosystem, where

most users interact with both printed-scanned material as well as digital content. [3]

AI Brain Bank [4] was a simple platform focused on content retrieval

through the use of open-source models for content embedding. It lacked features

such as content generation and support for additional communication channels, which

made it more suited to straightforward retrieval tasks. The minimalistic design

5

may have appealed to users seeking ease of use, but it did not address more

complex needs like multi-modal information processing or customizable workflows.

The AIKO project team identified the lack of customization options (even while

AI Brain Bank uses open-source models, whose tooling provides for a decent level

of abstractions [5]) and the absence of multi-modal support as key limitations

that would hinder its adoption in a diverse knowledge management environment.

iWeaver [6] was primarily concerned with website link analysis and used Open-

Graph for generating similarity scores between links. However, it restricted itself to

working exclusively with web links and provided limited functionality for processing

audio or video content. Paid options were available for video and audio processing, but

the use of public models without user-selectable options restricted the customisation

potential. Its reliance on OpenGraph made it a niche tool, primarily useful for users

focused on web-based content analysis. The lack of diverse content support and customi-

sation options limited its applicability in broader knowledge management scenarios.

Keepi.ai [7] offered more versatility by supporting a range of content types,

including URLs, text documents, and images. However, it fell short in supporting

video and audio, which made it less suitable for environments requiring multi-

modal content processing. Despite its broader range of file support compared to

other platforms, its limitations in handling multimedia content indicated it was not

a comprehensive solution for diverse knowledge management needs. The absence

of audio and video support constrained its usability in projects demanding a more

complete information capture mechanism. The AIKO project team set the ability

to process text, pdf and .docx as a benchmark for the minimum level of content

support required for a comprehensive knowledge management system, aiming to

surpass the benchmark standard by providing a more versatile and inclusive platform.

2.2 Gaps in Current Solutions

The review of existing knowledge management systems revealed several

common limitations that hindered their effectiveness in addressing the challenges of

6

information overload and fragmented knowledge management. A non exhaustive list

of key gaps identified in current solutions is given in the following sub-sections.

• Limited Multi-Modal Integration

Existing systems often focus on text-based content processing, neglect-

ing the importance of multi-modal integration. The lack of support for audio,

video, and image data types restricts the comprehensive capture and retrieval of

information across diverse media formats. The limitation results in incomplete

knowledge management solutions that fail to cater to the varied content needs

of users. Most pipelines are able to process unstructured text very efficiently.

• Subpar Search Functionalities

The main motive for AIKO was the limitations in search [8] provided

by popular cloud storage platforms, such as Google Drive and Dropbox. These

platforms provide basic search functionalities that are not context-aware and do

not support semantic search. The search was so basic that it lacked introspection

into the content of the files, searching only by filename. The lack of advanced

indexing mechanisms and semantic understanding hampers the accuracy and

relevance of search results, leading to inefficiencies in information retrieval.

The AIKO project team recognized the need for a more sophisticated search

engine that could deliver context-aware and cross-modal search capabilities to

enhance the user experience and improve knowledge management efficiency.

• Fragmented Data Management

The target demographic for AIKO struggles with data management since

users are unable to keep track of the data present. The data is often fragmented

across multiple platforms, including emails (usually self-emails), cloud storage, and

social media(self-groups, or message to self in WhatsApp). The lack of a unified

data management system results in inefficiencies in data retrieval and organization,

leading to cognitive overload and reduced productivity. The absence of a centralized

knowledge repository further exacerbates the problem, making it challenging for

users to access and utilize information effectively. The AIKO project team aimed

7

to address the gap by developing a comprehensive knowledge management system

that could integrate and normalize data from diverse sources, providing users

with a centralized platform for efficient information retrieval and management.

• Inadequate Personalization

Differences in user’s data ingest and processing requirements were not ade-

quately addressed by existing systems. The models in use have differing abilities

[9], and the lack of customisation options for model choice and hyperparameters

restricted the adaptability of the systems. The absence of personalized interfaces and

user-centric design features limited the usability of knowledge management systems,

as users were unable to tailor the platforms to their specific needs and preferences.

The AIKO project team recognized the importance of user empowerment and aimed

to provide a highly customizable and personalized system that could adapt to indi-

vidual user requirements, enhancing the overall user experience and productivity.

2.3 Summary

The various issues identified in Section 2.2, provide for the following key

problems to overcome:

2.3.1 Information Overload and Cognitive Burden

As highlighted, users face overwhelming volumes of data gener-

ated daily across various platforms. Current solutions either fail to address

such caveats comprehensively or provide incomplete mechanisms for manag-

ing and filtering vast quantities of information. AIKO integrates advanced

AI techniques like NLP to prioritize, categorize, and synthesize information

from multiple sources, significantly reducing the cognitive load on users.

2.3.2 Fragmented Data Across Platforms

The scattered nature of data across numerous platforms (emails, social

media, cloud storage) results in inefficient retrieval processes. While existing

solutions offer limited platform integration, AIKO’s unified knowledge repos-

itory aggregates data from heterogeneous sources into a centralized hub,

allowing users to access all necessary information from a single interface.

8

2.3.3 Inefficiencies in Information Retrieval

Current tools fall short in effectively searching through unstruc-

tured and multi-modal content types (text, audio, video). AIKO’s modu-

lar architecture and use of machine learning addressed the shortcomings

by enabling cross-platform, context-aware information retrieval. Its seman-

tic search functionality ensures more accurate and faster query results.

2.3.4 Lack of Personalization

Users have diverse needs and preferences when it comes to how

such users organize and access information. Current solutions rarely of-

fer customization. AIKO introduces personalized interfaces and collaborative

filtering mechanisms to tailor the knowledge organization process, cater-

ing to individual user requirements and improving overall engagement.

2.3.5 Security Concerns

Many existing platforms neglect to prioritize security or transparency.

AIKO, however, incorporates multi-layered encryption and modern authen-

tication protocols (OAuth 2.0 [10], SAML) to safeguard sensitive data.

Furthermore, its focus on explainable AI (XAI) ensures transparency, al-

lowing users to understand how their data is processed and managed.

2.3.6 Inadequate Contextual Understanding

The existing systems are often limited in their ability to understand context

within data or across different information streams. AIKO’s integration with advanced

NLP models enable better contextual understanding, ensuring that the retrieved infor-

mation is not only relevant but also coherent in relation to other available data.

9

CHAPTER 3
THEORETICAL FRAMEWORK

Chapter 3 is intended to be an introduction to the framework of the technologies

used in AIKO. The chapter covers a brief theoretical overview of the technologies used

in the project, including Natural Language Processing (NLP), Machine Learning (ML),

and Information Retrieval (IR). The explanations given here are not exhaustive, for

more in-depth information, detailed mathematical proofs, and the latest advancements in

the field, readers are encouraged to consult peer-reviewed papers, textbooks on Natural

Language Processing and Machine Learning, and reputable online resources such as

arXiv, academic journals, and technical blogs from leading AI research institutions.

3.1 Large Language Models

The following section provides a brief overview of Large Language Models,

enough to understand the context of AIKO’s development.

3.1.1 Fundamental Architecture and Principles

Large Language Models (LLMs) [11] represent a significant advance-

ment in natural language processing [12] and artificial intelligence. These

models are built upon the foundation of neural networks, specifically uti-

lizing the transformer architecture introduced by Vaswani et al. (2017).

• Transformer Architecture

The transformer architecture forms the backbone of modern LLMs.

It employs a self-attention mechanism that allows the model to

weigh the importance of different parts of the input when process-

ing each element. The architecture consists of several key components:

• Multi-head attention layers: These layers enable the model to focus on different

aspects of the input simultaneously, capturing complex relationships within the data.

• Feed-forward neural networks: These networks process the output of the attention

layers, allowing for non-linear transformations of the data.

10

• Layer normalization: The technique helps stabilize the learning process by normal-

izing the inputs to each layer.

• Residual connections: These connections facilitate the flow of information across the

network, mitigating the vanishing gradient problem in deep networks.

Figure 3.1: Transformer Architecture

• Scaling Principles

LLMs adhere to several scaling principles that contribute to their impressive

performance:

• Model size: Increasing the number of parameters in the model generally leads to

improved performance across a wide range of tasks.

11

• Dataset size: Training on larger and more diverse datasets enhances the model’s

ability to generalize and understand context.

• Compute resources: The amount of computational power used during training signif-

icantly impacts the model’s capabilities.

3.1.2 How LLMs Process and Generate Text

LLMs process and generate text through a series of sophisticated steps,

leveraging their large-scale neural networks to understand and produce human-

like language. Such process has been well-documented in recent Literature. [13]

1. Input Processing

When presented with input text, LLMs first tokenize the input into smaller

units, typically subwords or characters. These tokens are then embedded into a

high-dimensional vector space, where similar tokens are represented by vectors

close to each other. (See Section 3.2 for more details on vector embeddings.)

2. Contextual Understanding

The embedded tokens are processed through multiple layers of the trans-

former architecture. Each layer refines the representation of the tokens, incorporating

contextual information from the entire input sequence. Such process allows the

model to capture long-range dependencies and nuanced relationships within the text.

3. Text Generation

Text generation in LLMs is typically performed using autoregressive methods:

1. The model predicts the probability distribution of the next token based on the input

and previously generated tokens.

2. A token is selected from the distribution, often using techniques like nucleus

sampling or temperature-controlled sampling to balance between diversity and

coherence.

3. The selected token is appended to the output and fed back into the model as part of

the input for the next prediction.

4. The process continues until a stopping condition is met, such as reaching a maximum

length or generating a specific end token.

12

3.1.3 Theoretical Capabilities and Limitations

LLMs have demonstrated remarkable capabilities across various natural lan-

guage processing tasks

• Language understanding: LLMs can comprehend complex linguistic structures,

context, and nuances across multiple languages.

• Task generalization: These models can perform well on a wide range of tasks without

task-specific fine-tuning, demonstrating strong few-shot and zero-shot learning abil-

ities.

• Knowledge integration: LLMs can integrate and synthesize information

from their training data, effectively serving as large-scale knowledge bases.

• Creative generation: LLMs can generate coherent and creative text across various

styles and formats.

but LLMs also face inherent limitations [14]. These limitations are detailed below:

• Lack of true understanding: Despite their impressive performance, LLMs do not

possess true comprehension or reasoning capabilities comparable to human cognition.

• Hallucination: These models can generate false or inconsistent information, espe-

cially when dealing with topics beyond their training data.

• Contextual boundaries: LLMs have limited ability to maintain context over very

long sequences or across separate interactions.

• Bias and fairness: Models can perpetuate or amplify biases present in their training

data, raising ethical concerns about their deployment.

• Computational requirements: The scale of these models necessitates significant

computational resources for training and inference, limiting their accessibility.

3.2 Vector Embeddings

The following section dives into the theoretical foundations of vector

embeddings, providing an overview of the mathematical concepts, dimension-

ality reduction techniques, and similarity measures used in vector spaces.

13

3.2.1 Mathematical Concepts

Vector embeddings have emerged as a powerful technique for representing

textual data in machine learning and natural language processing. At their core, these

embeddings map discrete linguistic units (such as words, phrases, or documents) to

continuous vector spaces, enabling sophisticated mathematical operations and analyses.

The fundamental principle underlying vector embeddings is the distributional

hypothesis, which posits that words appearing in similar contexts tend to have

similar meanings. The hypothesis is operationalized by constructing dense vector repre-

sentations that capture semantic and syntactic relationships between linguistic units.

Formally, let 𝑉 be a vocabulary of size |𝑉 |. A vector embedding

model aims to learn a function 𝑓 : 𝑉 → 𝑅𝑑, where d is the dimension-

ality of the embedding space. For each word 𝑤 ∈ 𝑉 , the corresponding

embedding vector 𝑣𝑤 = 𝑓(𝑤) encodes its semantic and syntactic properties.

Several mathematical frameworks have been developed to learn these embeddings:

1. Matrix Factorization: Methods like Latent Semantic Analysis (LSA) factorize

word-context co-occurrence matrices to derive low-dimensional representations.

2. Neural Network-based Approaches: Models such as Word2Vec [15] and GloVe

[16] utilize shallow neural networks to predict words from their contexts (or vice

versa), learning embeddings as a byproduct of the prediction task.

3. Contextual Embeddings: Advanced models like BERT [17] employ deep bidirec-

tional transformers to generate context-dependent representations, capturing nuanced

word usage across different contexts.

The effectiveness of these embeddings stems from their ability to encode semantic

relationships in the geometry of the vector space. For instance, analogical relationships

often manifest as vector arithmetic operations (e.g., 𝑣king − 𝑣man + 𝑣woman ≈ 𝑣queen).

3.2.2 Dimensionality Reduction Techniques

While the raw dimensionality of embedding spaces can be quite

high, dimensionality reduction techniques are often employed to enhance

computational efficiency and mitigate the curse of dimensionality. These

14

methods aim to preserve the most salient features of the high-dimen-

sional embeddings while projecting them onto lower-dimensional subspaces.

Key dimensionality reduction techniques include:

1. Principal Component Analysis (PCA): PCA identifies orthogonal axes (prin-

cipal components) that capture the maximum variance in the data. For-

mally, given a set of n-dimensional vectors {𝑥1, …, 𝑥𝑚}, PCA finds a

transformation matrix 𝑊 that projects these vectors onto a 𝑘-dimensional

subspace (𝑘 < 𝑛) while maximizing the variance of the projected data.

2. t-Distributed Stochastic Neighbor Embedding (t-SNE) [18]: t-SNE (non-linear)

technique focuses on preserving local neighborhood structures in the high-dimen-

sional space. t-SNE minimizes the Kullback-Leibler divergence between probability

distributions representing pairwise similarities in the original and reduced spaces.

3. Autoencoders [19]: These neural network architectures learn compact repre-

sentations by training to reconstruct input data through a bottleneck layer.

The activations at the bottleneck serve as reduced-dimensional embeddings.

4. Uniform Manifold Approximation and Projection (UMAP) [20]: UMAP

constructs a topological representation of the high-dimensional data and opti-

mizes a low-dimensional layout that preserves the structure. UMAP often

provides a favorable balance between global and local structure preservation.

The choice of dimensionality reduction technique depends on the specific re-

quirements of the downstream task, such as visualization, clustering, or further machine

learning applications.

3.2.3 Similarity Measures in Vector Spaces

A crucial aspect of working with vector embeddings is quantifying the similarity

or distance between vectors. These similarity measures form the basis for numerous

natural language processing tasks, including information retrieval, document classifica-

tion, and semantic search. These measures are very well documented in literature [21].

Common similarity measures include:

15

1. Cosine Similarity: This metric measures the cosine of the angle be-

tween two vectors, providing a scale-invariant measure of orientation

similarity. For vectors u and v, cosine similarity is defined as:

cosine_similarity(𝐴, 𝐵) = 𝐴 ⋅ 𝐵
‖𝐴‖ ‖𝐵‖

=
∑𝑛

𝑖=1 𝐴𝑖𝐵𝑖

√∑𝑛
𝑖=1 (𝐴𝑖)

2√∑𝑛
𝑖=1 (𝐵𝑖)

2
(3.1)

Cosine similarity ranges from −1 (perfectly dissimilar) to 1 (perfectly similar), with 0

indicating orthogonality.

1. Euclidean Distance: This measure quantifies the straight-line distance between two

points in the vector space. For n-dimensional vectors u and v, it is defined as:

euclidean_distance(𝐴, 𝐵) = √∑
𝑛

𝑖=1
(𝐴𝑖 − 𝐵𝑖)

2 (3.2)

3. Manhattan Distance: Also known as L1 distance, this metric sums the absolute

differences along each dimension:

manhattan_distance(𝐴, 𝐵) = ∑
𝑛

𝑖=1
|𝐴𝑖 − 𝐵𝑖| (3.3)

The choice of similarity measure can significantly impact the perfor-

mance of downstream tasks and should be selected based on the specific

properties of the embedding space and the requirements of the application.

3.3 Information Retrieval

Information Retrieval (IR) is a fundamental area of study in computer

science that focuses on efficiently finding and presenting relevant informa-

tion from large collections of data. This section explores key aspects of

IR theory, including the comparison between classical and neural models,

relevance ranking algorithms, and evaluation metrics for retrieval systems.

Information retrieval models can be broadly categorized into classical

and neural approaches. Each category has its strengths and weaknesses, and

understanding their differences is crucial for designing effective IR systems.

16

3.3.1 Classical IR Models

Classical IR models have been the foundation of information re-

trieval for decades. These models typically rely on statistical and probabilis-

tic approaches to determine the relevance of documents to a given query.

1. Boolean Model: This model uses Boolean logic to match documents to queries.

Documents are represented as sets of terms, and queries are formulated using Boolean

operators (AND, OR, NOT). While simple and efficient, it lacks the ability to rank

results.

2. Vector Space Model (VSM) [22]: In VSM, both documents and queries are repre-

sented as vectors in a high-dimensional space. Each dimension corresponds to a

term in the vocabulary. Relevance is determined by calculating the cosine similarity

between the query vector and document vectors. VSM allows for ranking of results

and partial matching.

3. Probabilistic Models: These models, such as the Binary Independence Model (BIM)

and BM25, estimate the probability of a document being relevant to a query. The

mentioned models consider factors like term frequency, inverse document frequency,

and document length to compute relevance scores.

3.3.2 Neural IR Models

Neural IR models leverage deep learning techniques to improve

retrieval performance. These models can capture semantic relationships

and contextual information more effectively than classical approaches.

1. Embedding-based Models: These models use neural networks to learn dense vector

representations (embeddings) of words, sentences, or entire documents. Examples

include Word2Vec [15], BERT [17], and Sentence-BERT. These embeddings capture

semantic similarities, allowing for more nuanced matching between queries and

documents.

2. Neural Ranking Models: These models directly learn to rank documents given a

query. Such models can be categorized into:

17

• Representation-based: Learn separate representations for queries and documents,

then compute relevance scores (e.g., DSSM, CDSSM).

• Interaction-based: Model the interactions between query and document terms ex-

plicitly (e.g., DRMM, K-NRM).

• Hybrid: Combine both representation and interaction-based approaches (e.g.,

DUET).

1. End-to-End Neural IR Systems: Recent advancements have led to the development

of end-to-end neural IR systems that handle both candidate generation and ranking.

Examples include ANCE and DPR, which use dense retrievers followed by neural

re-rankers.

3.3.3 Relevance Ranking Algorithms

Relevance ranking is a critical component of IR systems, de-

termining the order in which retrieved documents are presented to

users. Several algorithms have been developed to address this challenge:

1. Term Frequency-Inverse Document Frequency

TF-IDF is a statistical measure used to evaluate the importance of a word in a

document relative to a collection of documents [23]. It is the product of two components:

1. Term Frequency (TF): Measures how frequently a term appears in a document.

2. Inverse Document Frequency (IDF): Measures the importance of a term across the

entire document collection.

This algorithm favors terms that are frequent in the current document but rare

across the entire collection.

2. BM25 (Best Matching 25)

BM25 is a probabilistic ranking function that improves upon the basic

TF-IDF model. It introduces document length normalization and saturation of

term frequency. The BM25 score for a document D given a query Q is:

𝑓(𝑞𝑖, 𝐷)
𝑘1 × (1 − 𝑏 + 𝑏 × |𝐷|

avgdl) + 𝑓(𝑞𝑖, 𝐷)
(3.4)

18

BM25(𝐷, 𝑄) = ∑
𝑛

𝑖=1
IDF(𝑞𝑖) × (𝑘1 + 1) × (3.4) (3.5)

Where:

• 𝑓(𝑞𝑖, 𝐷) is the frequency of query term 𝑞𝑖 in document D

• |𝐷| is the length of document D

• avgdl is the average document length in the collection

• 𝑘1 and 𝑏 are free parameters

BM25 is widely used in practice due to its effectiveness and efficiency.

3. Learning to Rank (LTR)

Learning to Rank is a machine learning approach to building rank-

ing models for IR systems. It uses supervised learning techniques to train

a model that can rank documents based on their relevance to a given

query. LTR algorithms can be categorized into three main approaches:

1. Pointwise Approach: Treats document ranking as a regression or classification

problem for single documents.

2. Pairwise Approach: Considers the relative order between pairs of documents and

formulates ranking as a classification problem on document pairs.

3. Listwise Approach: Directly optimizes the order of an entire list of documents.

Popular LTR algorithms include RankNet, LambdaRank, and LambdaMART.

4. Neural Ranking Models

As mentioned earlier, neural ranking models have gained prominence in

recent years. These models can be either representation-based or interaction-based:

1. Representation-based Models: Learn dense vector representations of queries and

documents independently, then compute relevance scores using similarity measures

(e.g., cosine similarity).

2. Interaction-based Models: Model the interactions between query and document

terms explicitly, often using techniques like attention mechanisms or convolutional

neural networks. [24]

19

Neural ranking models have shown strong performance in various

IR tasks, particularly when large amounts of training data are available.

3.3.4 Evaluation Metrics

Evaluating the performance of IR systems is crucial for un-

derstanding their effectiveness and comparing different approaches [25].

The following are some common evaluation metrics used in IR:

1. Precision and Recall

• Precision: The fraction of retrieved documents that are relevant.

Precision = Relevant Retrieved Documents
Total Retrieved Documents

(3.6)

• Recall: The fraction of relevant documents that are retrieved.

Recall = Relevant Retrieved Documents
Total Relevant Documents

(3.7)

2. F1 Score

The F1 score is the harmonic mean of precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

(3.8)

1. Mean Average Precision (MAP)

MAP provides a single-figure measure of quality across recall levels. For a

set of queries, MAP is the mean of the average precision scores for each query:

MAP = 1
𝑄

∑
𝑄

𝑞=1
AveP(𝑞) (3.9)

Where AveP(𝑞) is the average precision for a single query.

4. Normalized Discounted Cumulative Gain (nDCG)

nDCG measures the usefulness, or gain, of a document based

on its position in the result list. It uses a graded relevance scale

and discounts the relevance of documents lower in the ranking:

nDCG𝑝 =
DCG𝑝

IDCG𝑝

(3.10)

Where:

• DCG𝑝 is the Discounted Cumulative Gain at position p

20

• IDCG𝑝 is the Ideal DCG at position p

5. Mean Reciprocal Rank (MRR)

MRR is the average of the reciprocal ranks of the first relevant document for a

set of queries:

MRR = (1
𝑄

) ∑
|𝑄|

𝑖=1

1
rank𝑖

(3.11)

Where rank𝑖 is the rank position of the first relevant document for the i-th query.

3.4 Natural Language Processing

Natural Language Processing (NLP) is a multidisciplinary field at the

intersection of computer science, artificial intelligence, and linguistics. It focuses

on enabling computers to understand, interpret, and generate human language

in a way that is both meaningful and useful. This section explores the

foundational aspects of NLP, including the linguistic theories that underpin it,

fundamental NLP tasks, and the processes of semantic and syntactic analysis.

3.4.1 Linguistic Theories

The development of NLP is deeply rooted in linguistic theories that provide

frameworks for understanding the structure and meaning of language. Some key

linguistic theories that have significantly influenced NLP include:

• Chomsky’s Generative Grammar: This theory posits that language is governed by

a set of structural rules that can generate all possible grammatical sentences in a lan-

guage. It has been instrumental in developing formal grammars for natural language

parsing.

• Cognitive Linguistics: This approach emphasizes the relationship between language,

mind, and socio-physical experience. It has influenced the development of semantic

models and frame-based knowledge representation in NLP.

• Distributional Semantics: This theory suggests that words that occur in similar

contexts tend to have similar meanings. It forms the basis for many modern word

embedding techniques, such as Word2Vec [15] and GloVe [16].

21

• Discourse Analysis: This field studies language use in context, considering how larger

units of language create meaning. It has applications in dialogue systems and text

coherence analysis.

These theories provide the conceptual foundation for many NLP algorithms and

models, guiding the development of computational approaches to language processing.

3.4.2 Fundamental NLP Tasks

NLP encompasses a wide range of tasks, each addressing different as-

pects of language processing. Some of the most fundamental tasks include:

• Tokenization: The process of breaking down text into individual units (tokens),

typically words or subwords. This is often the first step in many NLP pipelines.

• Part-of-Speech (POS) Tagging: Assigning grammatical categories (e.g., noun, verb,

adjective) to each word in a text. This task is crucial for understanding the syntactic

structure of sentences.

• Parsing: Analyzing the grammatical structure of sentences. This can involve con-

stituency parsing (breaking sentences into nested constituents) or dependency parsing

(identifying grammatical relationships between words).

• Named Entity Recognition (NER): Identifying and classifying named entities (e.g.,

person names, organizations, locations) in text. This is essential for information

extraction and question answering systems.

• Coreference Resolution: Determining when different expressions in a text refer to

the same entity. This is crucial for maintaining coherence in language understanding.

• Sentiment Analysis: Determining the sentiment or emotional tone of a piece of text,

often categorized as positive, negative, or neutral.

• Machine Translation: Automatically translating text from one language to another,

a task that integrates many aspects of NLP.

These tasks form the building blocks for more complex NLP applications,

such as chatbots, text summarization systems, and question-answering systems.

22

3.4.3 Semantic and Syntactic Analysis

Semantic and syntactic analyses are core processes in NLP that deal with

extracting meaning and structure from text:

Syntactic Analysis: Syntactic analysis focuses on the grammatical structure of

sentences. It involves:

• Constituency Parsing: Breaking down sentences into nested constituents (e.g., noun

phrases, verb phrases) to form a parse tree.

• Dependency Parsing: Identifying grammatical relationships between words in a

sentence, often represented as a directed graph.

• Shallow Parsing: Identifying the main syntactic components of a sentence without

specifying their internal structure or relations.

Syntactic analysis is crucial for tasks that require understanding

sentence structure, such as grammar checking and machine translation.

Semantic Analysis: Semantic analysis aims to extract meaning from text. It

encompasses:

• Word Sense Disambiguation: Determining the correct meaning of a word in a given

context.

• Semantic Role Labeling: Identifying the semantic roles of words in a sentence (e.g.,

agent, patient, instrument).

• Entailment and Contradiction Detection: Determining the logical relationship

between sentences or propositions.

• Semantic Parsing: Mapping natural language to a formal meaning representation,

such as logical forms or database queries.

Semantic analysis is essential for applications that require deep under-

standing of text, such as question answering systems and text summarization.

The interplay between syntactic and semantic analysis is crucial in NLP.

While syntactic analysis provides the structural framework, semantic analysis fills

in the meaning, allowing for a comprehensive understanding of natural language.

23

Advanced NLP models, particularly those based on deep learning, often learn

to perform both types of analysis implicitly through training on large datasets.

3.5 Database Theory

The following section provides an overview of the database theory concepts that

underpin the design and implementation of AIKO.

3.5.1 Relational Database Concepts

Relational databases have been the cornerstone of data management

systems for decades [26], providing a structured approach to organizing

and querying data. The relational model, introduced by E.F. Codd in

1970, is based on the mathematical concept of relations and set theory.

The relational model is built upon several fundamental principles:

1. Data Organization: Data is organized into tables (relations) consisting of rows

(tuples) and columns (attributes).

2. Data Integrity: Constraints such as primary keys, foreign keys, and unique con-

straints ensure data consistency and accuracy.

3. Data Independence: Logical and physical data independence allows for changes in

the database schema or storage mechanisms without affecting application logic.

4. Declarative Query Language: SQL (Structured Query Language) provides a high-

level, declarative means of data manipulation and retrieval.

• Normalization

Normalization is a critical process in relational database design, aimed at mini-

mizing data redundancy and improving data integrity. The most commonly used normal

forms are:

• First Normal Form (1NF): Eliminate repeating groups and ensure atomic values.

• Second Normal Form (2NF): Remove partial dependencies on the primary key.

• Third Normal Form (3NF): Eliminate transitive dependencies.

Higher normal forms, such as Boyce-Codd Normal Form (BCNF) and Fourth

Normal Form (4NF), address more specific anomalies but are less commonly used in

practice.

24

• Relational Algebra

Relational algebra forms the theoretical foundation for operations in relational

databases. Key operations include:

• Selection (σ): Filters rows based on a condition.

• Projection (π): Selects specific columns from a relation.

• Union (∪): Combines tuples from two relations.

• Intersection (∩): Retains only tuples common to both relations.

• Difference (-): Removes tuples from one relation that appear in another.

• Cartesian Product (×): Combines every tuple from one relation with every tuple from

another.

• Join (⋈): Combines related tuples from two relations based on a join condition.

These operations provide the basis for more complex

queries and data manipulations in relational database systems.

3.5.2 NoSQL and Vector Databases

As data volumes and variety have grown exponentially, traditional rela-

tional databases have faced scalability and flexibility challenges. NoSQL (Not

Only SQL) databases emerged as a response to these challenges, offering

alternative data models and relaxed consistency guarantees to achieve better

performance and scalability. Vector databases, a specialized type of database,

are designed to store and query high-dimensional vector data efficiently,

making them ideal for machine learning and similarity search applications.

• NoSQL Data Models

NoSQL databases typically fall into four main categories:

1. Key-Value Stores: Simple databases that store data as key-value pairs (e.g., Redis,

DynamoDB).

2. Document Stores: Store and query data in document-like structures, often using

JSON (e.g., MongoDB, CouchDB).

3. Column-Family Stores: Organize data into column families, optimized for queries

over large datasets (e.g., Cassandra, HBase).

25

4. Graph Databases: Represent and store data as nodes and edges, optimized for highly

connected data (e.g., Neo4j, JanusGraph).

• CAP Theorem

The CAP theorem, introduced by Eric Brewer, states that it

is impossible for a distributed data store to simultaneously pro-

vide more than two out of the following three guarantees:

• Consistency: All nodes see the same data at the same time.

• Availability: Every request receives a response, without guarantee that it contains the

most recent version of the information.

• Partition Tolerance: The system continues to operate despite arbitrary partitioning due

to network failures.

NoSQL systems often prioritize availability and partition toler-

ance over strict consistency, leading to eventual consistency models.

• Vector Databases

Vector databases are a specialized type of database designed to

store and query high-dimensional vector data efficiently. Vector Data-

bases are particularly useful in machine learning and artificial intelli-

gence applications, where data is often represented as dense vectors.

Key features of vector databases include:

1. Efficient Similarity Search: Ability to perform fast nearest neighbor searches in

high-dimensional spaces.

2. Indexing Techniques: Use of specialized indexing methods like HNSW (Hierarchi-

cal Navigable Small World) or IVF (Inverted File) to speed up similarity queries.

3. Scalability: Designed to handle large volumes of high-dimensional data efficiently.

Examples of vector databases include Pinecone [27], Milvus, and Faiss

(while not a full database, it provides similar functionality for vector search).

26

3.5.3 ACID Properties and Eventual Consistency

ACID properties are a set of guarantees that ensure reliable pro-

cessing of database transactions. ACID properties are particularly important

in systems where data integrity is crucial, such as financial applications.

1. Atomicity: A transaction is treated as a single, indivisible unit that either completes

entirely or fails completely.

2. Consistency: A transaction brings the database from one valid state to another,

maintaining all predefined rules and constraints.

3. Isolation: Concurrent execution of transactions results in a state that would be

obtained if transactions were executed sequentially.

4. Durability: Once a transaction is committed, it will remain so, even in the event of

power loss, crashes, or errors.

Most relational database management systems (RDBMS) provide strong

ACID guarantees, ensuring data integrity at the cost of potential performance limita-

tions in distributed environments. In contrast, NoSQL databases often relax some

ACID properties to achieve better scalability and availability. The tradeoff between

strong consistency and performance is a key consideration in database design.

• Eventual Consistency

Eventual consistency is a consistency model used in distributed sys-

tems that allows for temporary inconsistencies but guarantees that all replicas

will eventually converge to a consistent state, given no further updates.

Key aspects of eventual consistency include:

1. Conflict Resolution: Mechanisms to resolve conflicts when multiple updates occur

simultaneously on different replicas.

2. Anti-Entropy Protocols: Background processes that synchronize data across repli-

cas to ensure convergence.

3. Vector Clocks: A technique used to track the causal relationships between different

versions of data across distributed replicas.

27

Eventual consistency is often employed in NoSQL systems to achieve better

scalability and availability, particularly in scenarios where absolute consistency

is not critical or where the time window for inconsistency is acceptably small.

Between the strong consistency provided by ACID transactions and the weak

guarantees of eventual consistency, there exists a spectrum of consistency models:

1. Strong Consistency: All replicas return the same value for a read operation at a

given time.

2. Sequential Consistency: All operations appear to occur in some sequential order,

consistent with the order seen by individual processes.

3. Causal Consistency: Operations that are causally related are seen by every node in

the same order.

4. Eventual Consistency: After a period of no updates, all replicas will gradually

become consistent.

The choice of consistency model depends on the specific requirements of the

application, balancing factors such as data integrity, availability, and performance.

3.6 Web Application Architecture

Web application architecture has evolved significantly since the in-

ception of the World Wide Web. This section examines three funda-

mental aspects of modern web application architecture: the client-server

model, RESTful architecture principles, and the spectrum of render-

ing approaches from server-side to client-side, including hybrid solutions.

3.6.1 Client-Server Model

The client-server model is a distributed application structure that parti-

tions tasks or workloads between the providers of a resource or service,

called servers, and service requesters, called clients. This model underpins

the vast majority of web applications and has several key characteristics.

The two components of the client-server model are:

• Client: Typically a web browser or mobile application that sends requests to the server

and displays the response to the user.

28

• Server: A computer or system that hosts the web application, processes requests from

clients, and sends back responses.

Communication between client and server occurs over a computer network,

most commonly the Internet, using standardized protocols such as HTTP or HTTPS.

They have several advantages

• Clear separation of concerns

• Centralized data storage and management

• Scalability through load distribution

• Easier maintenance and updates

and associated challenges.

• Network latency

• Server availability and reliability

• Potential single point of failure

3.6.2 RESTful Architecture Principles

Representational State Transfer (REST) is an architectural style for

distributed hypermedia systems, introduced by Roy Fielding in his doc-

toral dissertation (2000). RESTful architecture has become the de facto

standard for web APIs due to its simplicity, scalability, and performance.

• Key Principles

1. Statelessness: Each request from client to server must contain all information neces-

sary to understand and process the request.

2. Client-Server: A uniform interface separates clients from servers, allowing indepen-

dent evolution of application functions.

3. Cacheable: Responses must implicitly or explicitly define themselves as cacheable

or non-cacheable to prevent clients from reusing stale or inappropriate data.

4. Uniform Interface: A constraint defined by four interface constraints:

• Identification of resources

• Manipulation of resources through representations

• Self-descriptive messages

29

• Hypermedia as the engine of application state (HATEOAS)

5. Layered System: A client cannot ordinarily tell whether it is connected directly to

the end server or an intermediary along the way.

RESTful architecture offers several benefits:

• Improved scalability due to stateless operations

• Enhanced visibility and reliability through the uniform interface

• Independent evolution of client and server components

• Reduced coupling between client and server

3.6.3 Server-side vs. Client-side vs. Hybrid Rendering

The choice of rendering approach significantly impacts a web

application’s performance, user experience, and development complexity.

3.6.3.1 Server-side Rendering (SSR)

In SSR, the server processes requests, generates HTML, and sends the fully

rendered page to the client.

• Advantages:

‣ Faster initial page load

‣ Better SEO as content is immediately available to search engines

‣ Reduced client-side processing requirements

• Disadvantages:

‣ Higher server load

‣ Slower subsequent page loads due to full page reloads

‣ Less interactive user experience

• Client-side Rendering (CSR)

CSR relies on JavaScript running in the browser to render content dynamically.

• Advantages:

‣ Rich, interactive user experiences

‣ Reduced server load

‣ Faster subsequent page loads

30

• Disadvantages:

‣ Slower initial page load

‣ Potential SEO challenges

‣ Higher client-side resource requirements

• Hybrid Approaches

Hybrid approaches aim to combine the benefits of both SSR and CSR.

• Hydration

Hydration involves sending a pre-rendered HTML page from the server, along

with the JavaScript necessary to make it interactive. The client-side JavaScript then “hy-

drates” the static HTML, attaching event listeners and making the page fully interactive.

• Advantages:

‣ Fast initial page load with SSR

‣ Smooth transition to a fully interactive CSR application

• Disadvantages:

‣ Potential for layout shifts during hydration

‣ Increased complexity in development and debugging

• Resumability

Resumability is an emerging technique that aims to improve upon

hydration. Instead of re-executing all JavaScript on the client, a re-

sumable application can “resume” from where the server left off.

• Advantages:

‣ Eliminates redundant work between server and client

‣ Potentially faster and more efficient than traditional hydration

• Disadvantages:

‣ Relatively new concept with limited widespread adoption

‣ Increased complexity in state management between server and client

3.7 Security and Authentication

In the realm of modern computing and networked systems, security and authen-

tication play pivotal roles in safeguarding digital assets, maintaining data integrity, and

31

ensuring authorized access. This section delves into three crucial aspects of security and

authentication: cryptographic principles, the OAuth 2.0 framework, and the zero trust

security model.

3.7.1 Cryptographic Principles

Cryptography forms the bedrock of information security, providing mechanisms

to protect data confidentiality, integrity, and authenticity. At its core, cryptography

involves the use of mathematical algorithms to transform plaintext into ciphertext,

rendering it unintelligible to unauthorized parties.

• Symmetric and Asymmetric Encryption

Symmetric encryption, also known as secret-key cryptography, utilizes a

single key for both encryption and decryption processes. While efficient for large-

scale data encryption, it faces challenges in secure key distribution. Notable

symmetric algorithms include AES (Advanced Encryption Standard) and ChaCha20.

Asymmetric encryption, or public-key cryptography, employs a pair of

mathematically related keys: a public key for encryption and a private

key for decryption. This approach resolves the key distribution problem

but is computationally intensive. RSA (Rivest-Shamir-Adleman) and elliptic

curve cryptography (ECC) are prominent examples of asymmetric algorithms.

• Hash Functions and Digital Signatures

Cryptographic hash functions play a crucial role in ensuring data integrity. These one-

way functions map input data of arbitrary length to fixed-size output values, known

as hash digests. Ideal hash functions exhibit properties such as collision resistance

and the avalanche effect. SHA-256 and Blake2 are widely adopted hash functions.

Digital signatures, built upon asymmetric cryptography and hash functions,

provide a means of verifying message authenticity and non-repudiation. The

process involves encrypting a message digest with the sender’s private key,

allowing recipients to verify the signature using the corresponding public key.

32

3.7.2 OAuth 2.0 Framework

The OAuth 2.0 (Open Authorization) framework [10] has emerged as a de

facto standard for secure delegation of access to protected resources in distributed

systems. It enables third-party applications to obtain limited access to user accounts

on HTTP services, without necessitating the sharing of long-term credentials.

• Core Concepts and Roles

OAuth 2.0 defines four primary roles:

1. Resource Owner: The entity capable of granting access to a protected resource.

2. Resource Server: The server hosting the protected resources.

3. Client: The application requesting access to protected resources.

4. Authorization Server: The server issuing access tokens to the client after success-

fully authenticating the resource owner and obtaining authorization.

• Authorization Grant Types

The framework specifies multiple authorization types to accommodate various cases:

1. Authorization Code Grant: Optimized for confidential clients, this flow involves

user authentication and consent, followed by the exchange of an authorization code

for an access token.

2. Implicit Grant: Designed for public clients operating in web browsers, this flow

directly issues access tokens to the client.

3. Resource Owner Password Credentials Grant: Allows direct exchange of user

credentials for an access token, suitable for trusted first-party applications.

4. Client Credentials Grant: Enables client authentication and authorization based on

its own credentials, typically used for machine-to-machine communication.

• Security Considerations

While OAuth 2.0 provides a robust framework for authorization, its

security relies heavily on proper implementation. Key considerations include:

• Secure communication channels (TLS)

• Protection against cross-site request forgery (CSRF) attacks

• Proper validation and storage of tokens

33

• Implementation of token expiration and revocation mechanisms

3.7.3 Zero Trust Security Model

The zero trust security model represents a paradigm shift in cyber-

security, moving away from traditional perimeter-based security approaches.

This model operates on the principle of “never trust, always verify,” assum-

ing that threats may exist both outside and inside the network perimeter.

• Core Principles

1. Verify explicitly: Authenticate and authorize based on all available data points,

including user identity, device health, and application state.

2. Use least privilege access: Limit user access with just-in-time and just-enough-access

(JIT/JEA), risk-based adaptive policies.

3. Assume breach: Minimize blast radius for breaches and prevent lateral movement by

segmenting access by network, user, devices, and application awareness.

• Implementation Strategies

Implementing a zero trust architecture involves several key strategies:

1. Strong identity verification: Employ multi-factor authentication (MFA) and contin-

uous authentication mechanisms.

2. Device health validation: Assess device security posture before granting access to

resources.

3. Micro-segmentation: Divide the network into small zones to maintain separate

access for separate parts of the network.

4. Least privilege access: Grant users only the access, explicitly needed to perform

their tasks.

5. Data-centric security: Focus on protecting data, both at rest and in transit, rather

than just securing network segments.

• Challenges and Considerations

The zero trust model presents with the following challenges:

• Legacy system integration: Adapting existing infrastructure to support zero trust

principles can be complex.

34

• Performance impact: Continuous authentication and authorization checks may in-

troduce latency.

• User experience: Balancing security with usability requires careful design of authen-

tication workflows.

3.8 Software Engineering Principles

The Software Engineering Principles underlined below, were used

throughout the development of the project to ensure the qual-

ity, maintainability, and scalability of the codebase. Readers should

keep these principles in mind when reviewing the project’s codebase.

3.8.1 Design Patterns

Design patterns are reusable solutions to common problems in software

design. Design patterns provide a standardized approach to solving specific issues,

enhancing code readability, maintainability, and scalability. The current section

focuses on design patterns relevant to various architectural approaches, specifically

the Adapter, Bridge, Decorator, Facade, Template Method, and Iterator patterns.

• Adapter Pattern

The Adapter pattern allows incompatible interfaces to work together. It acts

as a bridge between two incompatible interfaces by converting the interface of a

class into another interface that clients expect. This pattern is particularly useful in

systems with legacy code or when integrating new components into existing systems.

• Bridge Pattern

The Bridge pattern decouples an abstraction from its implementation, al-

lowing both to vary independently. This pattern is especially useful when both

the abstraction and its implementation need to be extended using subclasses.

It promotes loose coupling and enhances the overall flexibility of the system.

• Decorator Pattern

The Decorator pattern allows behavior to be added to individual objects

dynamically without affecting the behavior of other objects from the same

35

class. This pattern is used to extend or alter the functionality of objects at

runtime, providing a flexible alternative to subclassing for extending functionality.

• Facade Pattern

The Facade pattern provides a unified interface to a set of in-

terfaces in a subsystem. It defines a higher-level interface that makes

the subsystem easier to use by reducing complexity and minimizing the

communication and dependencies between subsystems. This pattern is partic-

ularly useful in complex systems where subsystems are tightly coupled.

• Template Method Pattern

The Template Method pattern defines the skeleton of an algorithm

in a method, deferring some steps to subclasses. It allows subclasses to

redefine certain steps of an algorithm without changing the algorithm’s struc-

ture. This pattern is commonly used in frameworks where the overall

structure of an algorithm is fixed, but specific steps can be customized.

• Iterator Pattern

The Iterator pattern provides a way to access the elements of an

aggregate object sequentially without exposing its underlying representation.

This pattern is widely used in collection frameworks and allows for travers-

ing different collections uniformly without exposing their internal structure.

3.8.2 SOLID Principles

SOLID is an acronym for five design principles intended to

make software designs more understandable, flexible, and maintainable.

These principles are fundamental to object-oriented programming and design.

• Single Responsibility Principle (SRP)

The SRP states that a class should have only one reason to

change, meaning it should have only one job or responsibility. This prin-

ciple promotes high cohesion and helps in managing complexity by en-

suring that each class focuses on a specific aspect of the system.

36

• Open-Closed Principle (OCP)

The OCP suggests that software entities (classes, modules, functions,

etc.) should be open for extension but closed for modification. This

principle encourages the use of abstractions and polymorphism to allow

new functionality to be added with minimal changes to existing code.

• Liskov Substitution Principle (LSP)

The LSP states that objects of a superclass should be replace-

able with objects of its subclasses without affecting the correctness

of the program. This principle ensures that inheritance is used cor-

rectly and promotes the creation of well-structured class hierarchies.

• Interface Segregation Principle (ISP)

The ISP advises that no client should be forced to depend on methods it does not

use. This principle suggests breaking down large interfaces into smaller, more specific

ones, allowing clients to only know about the methods that are of interest to them.

• Dependency Inversion Principle (DIP)

The DIP states that high-level modules should not depend on low-level

modules; both should depend on abstractions. Additionally, abstractions should

not depend on details; details should depend on abstractions. This principle

promotes loose coupling and facilitates easier testing and maintenance of code.

3.8.3 Microservices Architecture Theory

Microservices architecture is an approach to developing a single appli-

cation as a suite of small services, each running in its own process and

communicating with lightweight mechanisms, often HTTP/REST APIs. This

architectural style has gained significant popularity due to its ability to sup-

port large, complex applications while maintaining scalability and flexibility.

• Key Characteristics

1. Decomposition by Business Capability: Services are organized around business

capabilities, promoting a clear separation of concerns.

37

2. Autonomy: Each service is developed, deployed, and scaled independently, allowing

for greater flexibility and faster development cycles.

3. Decentralized Data Management: Each service manages its own database, either

different instances of the same database technology or entirely different database

systems.

4. Smart Endpoints and Dumb Pipes: Microservices receive requests, process them,

and produce a response, with simple protocols (often REST over HTTP) used for

communication.

5. Failure Isolation: The failure of a single service does not cascade to bring down the

entire application.

• Benefits and Challenges

Microservices architecture offers several benefits, including improved

scalability, flexibility in technology stack selection, and easier maintenance.

However, it also introduces challenges such as increased complexity in

deployment and monitoring, potential performance overhead due to net-

work communication, and the need for careful service boundary definition.

• Implementation Considerations

Implementation of microservices architecture requires careful consideriation:

1. Service Discovery: Mechanisms for services to locate and communicate with each

other dynamically.

2. API Gateway: A single entry point for all clients, handling authentication, load

balancing, and routing requests to appropriate services.

3. Distributed Tracing: Tools and practices to monitor and debug requests as the

requests propagate through multiple services.

4. Containerization and Orchestration: Technologies like Docker and Kubernetes are

often used to package and manage microservices.

5. Event-Driven Architecture: Many microservices implementations use event-driven

models to handle asynchronous communication between services.

38

CHAPTER 4
METHODOLOGY

This section goes into detail about the overall system design, the development

approach, the various “ends” of the system, and the technologies used. It also provides

a short overview of the libraries and frameworks used in the development of AIKO.

4.1 High-Level Overview

AIKO comprises the following key subsystems and components:

4.1.1 Data Ingestion and Integration Subsystem

The Data Ingestion and Integration Subsystem serves as the primary mech-

anism for acquiring and harmonizing data from diverse sources into a unified

format. The subsystem leverages specialized data connectors, application program-

ming interfaces (APIs), and web scraping techniques to facilitate comprehensive

information retrieval. Through sophisticated data transformation and normalization

processes, the subsystem ensures seamless integration of all incoming data streams.

4.1.2 Information Processing Subsystem

The Information Processing Subsystem manages the complex task of pro-

cessing and analyzing ingested data across multiple modalities. The subsystem

employs advanced Natural Language Processing (NLP), Computer Vision capabil-

ities—including Face Recognition and Object Detection—and Audio Processing

algorithms. Through these technologies, the subsystem generates detailed meta-

data, tags, and annotations, enabling enhanced search and retrieval functionality.

4.1.3 Knowledge Base and Indexing Subsystem

The Knowledge Base and Indexing Subsystem maintains responsibility for

the storage and indexing of processed data, ensuring efficient retrieval operations.

The subsystem incorporates Vector Databases, Query Processing Engines, and sophis-

ticated Indexing Algorithms, complemented by robust, secure, and scalable storage

solutions. Critical to the subsystem’s operation are the implemented security mea-

sures and access control mechanisms, which provide comprehensive data protection.

39

4.1.4 Search and Retrieval Engine

The Search and Retrieval Engine delivers advanced search capabilities and

personalized recommendations to end users. The engine incorporates Semantic

Search functionality, NLP Query Understanding, and Data Ranking Algorithms to

optimize search results. Users benefit from implemented faceted search capabili-

ties, comprehensive filtering options, and customizable result presentation features.

4.1.5 User and Data Management Subsystem

The User and Data Management Subsystem orchestrates user pro-

files, access controls, and cross-device synchronization. The subsystem im-

plements OAuth protocols and social login mechanisms to ensure secure

authentication. Real-time synchronization capabilities and conflict resolution

strategies maintain data consistency across platforms. Additionally, an in-

tegrated notification system manages user alerts and updates effectively.

4.1.6 User Interface and Experience Subsystem

The User Interface and Experience Subsystem delivers an intuitive, respon-

sive, and user-friendly interface for system interaction. The subsystem adheres

to modern web technologies, responsive design principles, and accessibility

standards. The architecture (currently) encompasses two primary components: a

Web Application and an API with comprehensive documentation and example

code for third-party integrations and power users. Together, these components

ensure a cohesive and accessible user experience across all interaction points.

4.2 System Interactions

The subsystems within AIKO interact with each other to provide a seamless

user experience and efficient information management. The data ingestion and

integration subsystem feeds data into the information processing subsystems, which

generate metadata and annotations for storage in the knowledge base. The search and

retrieval engine retrieves relevant information based on user queries and preferences,

while the user management subsystem ensures secure access and synchronization

40

across devices. The user interface subsystem provides an intuitive interface for

users to interact with the system and access the information stored in AIKO.

Figure 4.1: System Interactions

4.3 Development Approach

AIKO was developed using the Waterfall Methodology [28]. The project

was divided into distinct phases, each culminating in a set of deliverables that

were reviewed and approved before proceeding to the next phase. The Waterfall

Methodology was chosen for its structured approach, clear milestones, and well-

defined requirements. The development process followed the following stages:

4.3.1 Requirements Gathering

The project began with a comprehensive requirements gathering phase,

where the team worked closely with stakeholders to define the scope, objec-

tives, and key features of AIKO. The requirements were documented in detail

to ensure a clear understanding of the project goals. A requirements specifi-

cation document was created to serve as a reference throughout the develop-

ment process [29]. The Software Requirements Specification (SRS) document

41

outlined the functional and non-functional requirements of AIKO. A digital

copy of the SRS document is available alongside the project source code.

The SRS detailed the requirements of the system as well as

the methods of verification and validation required to ensure that the

system met the specified requirements. It was approved on July 31,

2024, and served as the foundation for the design phase of AIKO.

4.3.2 Design and Architecture

The design phase of AIKO focused on translating the requirements outlined in

the SRS document into a detailed system architecture and design. The team conducted

a series of design workshops to define the system components, interactions, and

data flows. The architecture was designed to be modular, scalable, and extensible,

allowing for future enhancements and integrations. The design phase culminated in the

creation of detailed design documents, including system diagrams, data models, and

interface mockups. The Software Design Document (SDD) was created to document

the architectural decisions, design patterns, and technologies used in AIKO [30]. It was

approved on August 16, 2024, and served as a blueprint for the development phase.

The SDD detailed the high-level architecture of AIKO, including the subsys-

tems, components, and interactions within the system. The set of technologies

was (and is) quickly evolving and as such was not included in the SDD.

4.3.3 Development Phase

The development phase of AIKO involved the implementation of the

system’s components, features and functionalities. The team followed a semi-

structured approach. The development process was iterative. A simple ver-

sion of the system was developed first, followed by incremental enhance-

ments and additions. The details about the libraries, frameworks etc. are

included in Section 4.5 and Section 4.7. The increments are detailed below:

• Increment 1 : Setup the core project structure to be a monorepo [31] with the

following packages:

‣ src-web: The main frontend web application

42

‣ src-backend: The main backend server

‣ supabase: The package detailing the structure and setup of the Supabase infrastruc-

ture.

‣ support: This package contains the support files and additional non-essentials of

the project.

• Increment 2

‣ Implementation of a novel, extensible communication stack for Large Language

Models (LLMs).

‣ Implementation of a plugin system for the Data Ingestion Service.

‣ Addition of support for a few basic file formats such as text/* and application/

pdf.

• Increment 3

‣ Implementation of a simple user interface for authentication, user management and

ingestion.

• Increment 4

‣ Implementation of a simple search engine with basic search capabilities.

‣ Implementation of a simple metadata generation system.

‣ Implementation of a simple data storage system.

• Increment 5

‣ Refinement of the search engine with advanced search capabilities.

‣ Refinement of the metadata generation system to handle larger contexts (up to

32,768 tokens)

‣ Expansion of the plugin system to include the LLMs as well.

• Increment 6

‣ Addition of support for more file formats such as image/* and audio/*.

‣ Addition of a landing page for the web application.

‣ Development of a notification library for the frontend.

• Increment 7

‣ Extension of the DIS to include proper support for .docx and .pptx series of files.

43

‣ Extension of the IPS to include proper support for .docx and .pptx series of files.

‣ Addition of more model providers

• Increment 8

‣ Implementation of a new model for the DIS and IPS to increase the context window

to 128,000 tokens.

‣ Fixed regression errors with the DIS and IPS’s processing of edge case files.

Unit and End-to-End tests were written and executed at the end of each increment

to ensure the quality and reliability of the system. The development phase had to be com-

pleted ahead of schedule due to a change in the project timeline. The development phase

was completed on September 12, 2024. It was scheduled to end on October 7, 2024. The

early completion of the development phase required the team to defer some features.

4.3.4 Testing and Quality Assurance

The testing phase of AIKO began on September 12, 2024. The testing phase

involved a series of unit tests, integration tests, and end-to-end tests to validate the

functionality and performance of the system. The testing procedures were outlined in

the SRS [29] and SDD [30]. A comprehensive document detailing the testing proce-

dures and results was created to ensure that the system met the specified requirements

and functioned according to the design specifications. Issues with the system were

documented and resolved promptly to ensure the quality and reliability of AIKO.

The Verification and Validation Document [32] was approved on

September 19, 2024, signifying the completion of the testing phase.

4.3.5 Deployment and Maintenance

The final phase of AIKO required the deployment of the system to a

production environment. The deployment process involved setting up the necessary

infrastructure, configuring the servers, and ensuring that the system was operational

and accessible to users. The deployment phase was completed on September 26,

2024, and AIKO was made available to a select user group for testing and feedback.

44

4.3.6 Project Budget

Another document [33] was created to detail the financial requirements of

the project. The budget estimation included costs for development, testing, deploy-

ment, and maintenance of AIKO. The total budget for the project was estimated

at ₹22,300 with about ₹21,000 allocated for the machine learning models and

the rest for the hosting of the platform. The budget was approved on August

07, 2024. The following tables provide a brief overview of the project budget.

Table 4.1: Monthly Operating Costs

Item Cost per Month (INR)

Machine Learning Cloud ₹5,000

API Access for GenAI models ₹2,000

Total Monthly Costs ₹7,000

Table 4.2: One-time Costs

Item Cost (INR)

Domain Purchase ₹1,300

Total One-time Costs ₹1,300

Table 4.3: Total Project Budget

Item Cost (INR)

Monthly Operating Costs (₹7,000 × 3 months) ₹21,000

One-time Domain Purchase ₹1,300

Total Operating Cost ₹22,300

The following sections provide detailed information on the tech-

nologies and frameworks used in the development of AIKO.

45

4.4 Data Layer Implementation

The realtional database was hosted using Supabase [34]. Supabase is

an open-source platform that provides a powerful alternative to Firebase. It

offers a suite of tools and services to help developers build scalable and

secure web and mobile applications quickly. Key features of Supabase include:

• Real-time database

• Authentication and user management

• Auto-generated APIs

• Serverless functions

• Storage for large files

Supabase is built on top of PostgreSQL [35], giving develop-

ers the flexibility of a robust relational database while providing the

ease of use typically associated with Backend-as-a-Service (BaaS) platforms.

The exact database schema is given in Appendix B

4.4.1 Users

This table is used to store the user’s metadata.

• id (UUID, Primary Key, References auth.users(id)): Unique Identifier

• name (TEXT) : User’s Name

• theme (TEXT, Default: ‘light’): User’s Theme

• other (JSONB): Other Metadata

• updated_at (TIMESTAMP WITH TIME ZONE, Default:

CURRENT_TIMESTAMP): Last Updated Time

4.4.2 Entities

This is the primary table in use by AIKO. It stores the entities that are ingested

into the system.

• id (UUID, Primary Key, Default: uuid_generate_v4()) : Unique Identifier

• user (UUID, References auth.users(id)): User Identifier

• source (TEXT, Not Null): Source of the Entity

• type (TEXT, Not Null): Type of the Entity

46

• title (TEXT): Title of the Entity as generated by IPS

• description (TEXT): Description of the Entity as generated by IPS

• tags (TEXT[], Default: ‘{}’): Tags for the Entity as generated by IPS

• processed (BOOLEAN, Default: FALSE): Whether the Entity has been processed by

the DIS

• processed_at (TIMESTAMP WITH TIME ZONE): Time of Processing by the DIS

• created_at (TIMESTAMP WITH TIME ZONE, Default: CURRENT_TIMESTAMP):

Time of Creation

• updated_at (TIMESTAMP WITH TIME ZONE, Default:

CURRENT_TIMESTAMP): Last Updated Time

• deleted (BOOLEAN, Default: FALSE): Whether the Entity has been deleted (used in

case of soft deletion)

• metadata (JSONB): Additional Metadata, such as the model used for processing

4.4.3 Messages

This table stores the chat messages as generated by the user as well as the system.

• id (UUID, Primary Key, Default: uuid_generate_v4()): Unique Identifier

• user (UUID, References auth.users(id)): User Identifier

• entity (UUID, References public.entity(id)): Entity Identifier

• content (TEXT): Content of the Message

• is_user_message (BOOLEAN, Default: TRUE): Whether the Message is from the

User

• created_at (TIMESTAMP WITH TIME ZONE, Default: CURRENT_TIMESTAMP):

Time of Creation

• metadata (JSONB): Additional Metadata, such as the model used for processing

4.5 Backend Development

The backend of AIKO encapsulates the API Layer alongside the DIS and IPS

as detailed in Section 4.1. The backend is responsible for handling data ingestion,

processing, storage, and retrieval. This section delves into the technologies, frame-

works, and design considerations that underpin the backend development of AIKO.

47

The backend consists of one main server that handles all incoming requests

and manages the routing for the data that is ingested and processed. The backend

server is authenticated with Supabase’s User JWT and uses that to verify and

route the various requests to the appropriate services. It also keeps track of

the various models and plugins that are available for use in the DIS and IPS.

The backend is stateless, meaning that it does not store any session

data. This allows for easy scaling and deployment across cloud environments.

The backend server is designed to be highly scalable and fault-tolerant, en-

suring that it can handle large volumes of data and requests efficiently.

The team initially wanted to use ready-to-use solutions for the back-

end, but due to a underlying need for customizability, performance and the

stateless nature of the backend, the team decided to build the LLM com-

munication stack, the plugin architecture and the API flows from scratch.

4.5.1 Novel LLM Communication Stack

The most used libraries for LLMs is LangChain. The LangChain library is a

simple, yet powerful library that allows for easy communication with LLMs. The

library is designed to be extensible and flexible, allowing for easy integration with

various LLMs. However, the abstractions over the LLMs are very high level, such

that the extensible nature of AIKO would not have been possible if LangChain

were used. The abstractions also cause a performance hit, which is not acceptable

for AIKO. The team decided to build a custom communication stack that would

allow for easy integration with various LLMs, while also providing a low-level

interface for maximum performance. The communication stack uses WebSockets.

4.5.2 Plugin Architecture

The plugin architecture is a key component of the backend. The plugin archi-

tecture allows for easy integration of new connectors and transformation logic as

additional data sources are incorporated into AIKO. The plugin architecture is designed

to be extensible and flexible, allowing for easy integration with various data sources.

The plugin architecture is stateless, allowing for easy scaling and deployment across

48

cloud environments. The plugin architecture is designed to be highly scalable and fault-

tolerant, ensuring that it can handle large volumes of data and requests efficiently.

The requirement for a new plugin to be incorporated into AIKO is

that it must subclass an abstract class and define the necessary underly-

ing methods. The abstract class is used as the interface into the plugin.

The LLMs are required to subclass the LLMPlugin class and reimplement

the _invoke asynchronous method to provide a asynchronous generator. The async

generator is used to asynchronously stream the response back to the frontend.

The DIS plugins are required to subclass the FilePlugin

class and define a _process_file method. The _process_file takes

a FastAPI.UploadFile and return the text extracted from the file.

The IPS is implemented as a fixed flow within the file upload route.

4.6 Backend Technologies and Frameworks

This section details the technologies, frameworks, toolkit

and libraries crucial to the implementation of AIKO’s backend.

Python [36] was used as the backend language of choice, due to

ease of development and the tooling around the language. Version 3.12.6

was used as it is the latest stable version as of the development phase.

The backend of AIKO is hosted using Railway. NixPacks [37] are used

to build containers for the backend, which can then be scaled horizontally.

4.6.1🤗 Transformers

🤗 Transformers [5] (HuggingFace Transformers) provides APIs and

tools to easily download and train state-of-the-art pretrained models. Us-

ing pretrained models can reduce your compute costs, carbon footprint,

and save you the time and resources required to train a model from

scratch. These models support common tasks in different modalities, such as:

• Natural Language Processing: text classification, named entity recognition, question

answering, language modeling, summarization, translation, multiple choice, and text

generation.

49

• Computer Vision: image classification, object detection, and segmentation.

• Audio: automatic speech recognition and audio classification.

• Multimodal: table question answering, optical character recognition, information ex-

traction from scanned documents, video classification, and visual question answering.

🤗 Transformers support framework interoperability between PyTorch, Tensor-

Flow [38], and JAX. This provides the flexibility to use a different framework

at each stage of a model’s life; train a model in three lines of code in one

framework, and load it for inference in another. Models can also be exported to

a format like ONNX and TorchScript for deployment in production environments.

🤗 Transformers was also used to provide the inference capabilities for

LLMs both during development time as well as during server deployment.

4.6.2 Uvicorn and Gunicorn

Uvicorn is a lightning-fast ASGI (Asynchronous Server Gateway Interface)

server implementation, designed for use with Python’s asyncio framework. It’s

built on uvloop and httptools, which are implemented in Cython for optimal

performance. Uvicorn excels in handling asynchronous Python web applications,

making it particularly well-suited for frameworks like FastAPI and Starlette.

Key features:

• High performance due to its asyncio-native design

• Supports HTTP/1.1 and WebSockets

• Automatic reloading during development

• Compatible with ASGI applications and frameworks

Gunicorn (Green Unicorn) is a WSGI (Web Server Gateway In-

terface) HTTP server for Unix systems, originally designed for Python

web applications. It’s known for its simplicity, stability, and compati-

bility with various web frameworks. Gunicorn uses a pre-fork worker

model, spawning multiple worker processes to handle incoming requests.

Key features:

• Support for multiple worker process types (sync, eventlet, gevent)

50

• Easy integration with popular Python web frameworks (Django, Flask)

• Automatic worker process management

• Extensible through plugins

While Gunicorn is primarily a WSGI server, it can be used in conjunc-

tion with Uvicorn to serve ASGI applications, combining Gunicorn’s process

management capabilities with Uvicorn’s high-performance ASGI implementation.

The AIKO project uses Uvicorn’s basic HTTP server for development and

uses Gunicorn with Uvicorn’s worker processes (uvicorn_worker.UvicornWorker)

to serve the ASGI FastAPI application for production.

4.6.3 FastAPI

FastAPI [39] is a modern, fast (high-performance), web framework for building

APIs with Python based on standard Python type hints. It runs on the ASGI specification.

The key features are:

• Fast: Very high performance, on par with NodeJS and Go (thanks to Starlette and

Pydantic [40]). One of the fastest Python frameworks available.

• Fast to code: Increase the speed to develop features by about 200% to 300%.

• Fewer bugs: Reduce about 40% of human (developer) induced errors.

• Intuitive: Great editor support. Completion everywhere. Less time debugging.

• Easy: Designed to be easy to use and learn. Less time reading docs.

• Short: Minimize code duplication. Multiple features from each parameter declaration.

Fewer bugs.

• Robust: Get production-ready code. With automatic interactive documentation.

• Standards-based: Based on (and fully compatible with) the open standards for APIs:

OpenAPI (previously known as Swagger) and JSON Schema.

FastAPI is used as the main backend web frame-

work. It contains implementations for WebSockets and multipart re-

sponses, which were instrumental in the development of AIKO.

51

4.6.4 Pinecone

Pinecone [27] is a managed vector database designed for storing and querying

high-dimensional vector embeddings. It enables fast similarity search for machine learn-

ing applications like recommendation systems, semantic search, and image retrieval.

Key features of Pinecone include:

• Scalable vector indexing and search

• Low-latency queries

• Support for metadata filtering

• Easy integration with popular ML frameworks

Pinecone allows developers to build AI-powered applications without hav-

ing to manage complex infrastructure for vector search. It’s used by companies

across industries to deploy large-scale machine learning models in production.

Pinecone is used to host the embedded texts and perform re-

trieval on them. A seperate name space is created for every user

providing secure seperation. The distance metric used was cosine.

4.6.5 Other Libraries and Frameworks

PyMuPDF [41] was used as the transformational logic behind PDF processing.

PyTest [42] and Molotov were used as testing frameworks.

python-pptx and python-docx provided insights into the processing and inges-

tion of .docx and .pptx respectively.

The machine learning models were hosted on the cloud using the following two

technologies.

• Amazon Bedrock is a fully managed service that provides a single API to access and

utilize various high-performing foundation models (FMs) from leading AI companies.

It offers a broad set of capabilities to build generative AI applications with security,

privacy, and responsible AI practices.

• NVIDIA NIM™, part of NVIDIA AI Enterprise, provides containers to self-

host GPU-accelerated inferencing microservices for pretrained and customized AI

models across clouds, data centers, and workstations. Upon deployment with a

52

single command, NIM microservices expose industry-standard APIs for simple

integration into AI applications, development frameworks, and workflows. Built

on pre-optimized inference engines from NVIDIA and the community, including

NVIDIA® TensorRT™ and TensorRT-LLM, NIM microservices automatically opti-

mize response latency and throughput for each combination of foundation model

and GPU system detected at runtime. NIM containers also provide standard observ-

ability data feeds and built-in support for autoscaling on Kubernetes on GPUs.

The embedding model (nv-embed-1 [43]) is hosted on NVIDIA®

NIM™. It boasts a dimensionality of 4096 and is based

on the Mistral architecture. Amazon Bedrock hosts the LLMs.

4.6.6 NLP-Enabled Content Processor

One core aspect of AIKO is the Content Processor. It was implemented using

one of the latest LLMs. The LLMs are finetuned to efficently “remember” the

information in the text without any output tokens. Once all of the entity has been

parsed, the LLM output is then structured using a completions endpoint (rather than

a chat endpoint) to reply only with JSON. LLMs are few shot learners [14], and as

such a few examples of the intended outputs are given alongside the system prompt.

Intitially, llama3-8b-8192 was used, which had a context window of 8192

tokens. The model was later updated to a finetuned version of mistral-8x7b-32768

which improved the context window to 32768 tokens. The model was then

further upgraded to a instruction-finetuned model from Cohere [44] called command-

r-plus which significantly increased the context window to 128,000 tokens.

The content ingestion is taken care by various multimodal LLMs and Computer

Vision Models. Currently Anthropic’s Claude 3.5 Sonnet Model as well as a new

offering from Mistral called Pixtral-12B is being used for images. These models

convert the image into an Intermediate Representation, which is a common, extensible

format to facilitate seamless integration with downstream services and processes.

The audio is processed by virtue of a Large-Scale Weak

Supervision model called Whisper Large v3 from OpenAI [45].

53

Other entites (such as text documents) are split into

their constituents and then the components are processed.

4.6.7 Search Engine

The search engine is designed using two parallel workflows.

A embedding flow that takes the user’s query, modifies it and em-

beds it to get a vector representation that resembles the target entity.

This vector is then used to do a Nearest Neighbor seach over the

corpus of the user’s data. The vector search is done inside Pinecone.

Another flow takes the query, extracts the keywords from the query and

does a Fuzzy Search over the corpus to find related fragments from the corpus.

The results from both are then reranked to build a final result list.

4.7 Frontend Development

The frontend was designed using the latest web frameworks to ensure perfor-

mance and ease of development.

The frontend is the main interface for common users. It allows the following

functions:

• Viewing Entities ingested into the system.

• Searching for Entities using Neural Search.

• Ingestion of new Entities into AIKO’s

• Q/A chat with the Entities regardless of their modality.

4.7.1 User Interface and Experience Design

AIKO’s user interface has been designed to be intuitive, respon-

sive and accessible across various devices. It follows standardized guide-

lines on UI Design and emphasizes simplicity and effectiveness [46]

The core user interface is split into 4 components.

1. Left Sidebar: The left sidebar contains quick links for the various actions in AIKO.

2. Right Sidebar: Right sidebar contains model settings, model choice selector, as well

as zones for user metadata.

54

3. Central Content Area: This displays the main content of the application, including

search results, document previews, and user interactions.

4. Bottom Dock: The bottom dock is the primary navigational element for the appli-

cation, containing the links to various parts of AIKO.

The application is structured in a way that maximizes the screen real estate for the main

content area.

4.8 Frontend Technologies and Frameworks

This section details the technologies, frameworks, toolkit and libraries crucial to

the implementation of AIKO’s frontend.

TypeScript was used as the frontend language of choice. Svelte was used as the

frontend framework. The tooling for the frontend is handled using vite.

The frontend (and the serverless part of the frontend) is hosted on Vercel [47].

4.8.1 TypeScript

TypeScript [48, 49] is a programming language that builds upon JavaScript by

adding optional static typing and other features. Here’s a brief introduction: TypeScript

is:

• A superset of JavaScript

• Developed and maintained by Microsoft

• Designed to make development of large-scale applications easier

Key features:

• Static typing

• Object-oriented programming features

• Improved tooling and IDE support

• Compatibility with existing JavaScript code

TypeScript compiles to plain JavaScript, allowing it to run in

any environment that supports JS. Typescript was used as it

provides type safety and better frontend development experience.

55

4.8.2 Svelte

Svelte is a modern front-end framework that takes a different ap-

proach to building user interfaces compared to traditional frameworks like

React and Vue. Instead of relying on a virtual DOM for rendering, Svelte

compiles your components into highly optimized JavaScript code at build

time. This eliminates the need for expensive DOM manipulations during run-

time, resulting in better performance and potentially smaller bundle sizes.

Key Features:

• Declarative Syntax: Svelte uses a declarative syntax, making it easy to define the

structure and behavior of your UI components.

• Component-Based Architecture: Svelte promotes a component-based approach, al-

lowing you to break down your application into reusable and modular components.

• Reactivity: Svelte’s reactivity system automatically updates the UI when data changes,

ensuring your application stays in sync with the underlying state.

• No Virtual DOM: Svelte compiles components directly to efficient JavaScript, elimi-

nating the overhead of a virtual DOM.

• Strong Community and Ecosystem: Svelte has a growing community and ecosystem,

with a wide range of tools, libraries, and resources available.

Svelte 5 introduces a concept called “runes”, which are a pow-

erful set of primitives for controlling reactivity. Runes signifi-

cantly improve the performance and allow for finegrained reactivity.

SvelteKit [50] is a full-stack framework built on top of Svelte.

It provides a set of tools and conventions for building server-ren-

dered web applications, offering a more streamlined development experience.

Key Features:

• Server-Side Rendering (SSR): SvelteKit renders your components on the server,

improving initial page load performance and SEO.

• Code Splitting: SvelteKit automatically splits your code into smaller bundles, reduc-

ing the initial load time of your application.

56

• Routing: SvelteKit provides a built-in routing system for managing navigation within

your application.

• Data Fetching: SvelteKit offers built-in mechanisms for fetching data on the server or

client-side, depending on your needs.

• File-Based Routing: SvelteKit uses a file-based routing convention, making it easy to

organize and manage your application’s routes.

• Static Site Generation (SSG): SvelteKit can generate static versions of your applica-

tion, which can be hosted on a CDN for maximum performance.

In addition, libraries like svelte-motion, iconify-svelte, svelte-markdown

and svelte-sonner were used to provide additional functionalities.

4.8.3 Vite

Vite is a modern front-end build tool that aims to provide a fast and

efficient development experience. It leverages native ES modules for development,

eliminating the need for bundling during the development process. This results

in significantly faster hot module replacement (HMR) and overall build times.

Key Features:

• Native ES Modules: Vite takes advantage of the browser’s native ES module support

to serve source files directly, eliminating the need for bundling during development.

• Fast HMR: Vite’s efficient HMR implementation allows for near-instantaneous up-

dates to your application, improving your development workflow.

• No Bundling During Development: By avoiding bundling during development, Vite

achieves significant performance gains, especially for larger projects.

• Production Bundling: Vite uses Rollup under the hood for production builds, ensuring

that your application is optimized for deployment.

• Rich Plugin Ecosystem: Vite’s plugin system allows you to extend its functionality

with various tools and features, such as CSS preprocessors, linters, and more.

Vite uses a plugin architecture and as such requires a plugin for Svelte. The plugin is

called vite-plugin-svelte.

Unit Testing for the frontend is handled in a program called Vitest [51].

57

4.8.4 Tailwind CSS

Tailwind CSS [52] is a utility-first CSS framework that provides a

set of pre-defined CSS classes for styling HTML elements. Unlike traditional

CSS frameworks that provide pre-built components, Tailwind CSS empowers

developers to build custom user interfaces by combining these utility classes.

Key Features:

• Utility-first approach: Tailwind CSS focuses on providing low-level utility classes

that can be combined to create custom styles. This approach gives developers greater

control over their designs and reduces the need for custom CSS.

• Customizable: Tailwind CSS allows developers to customize the framework’s default

styles and add their own utility classes, providing flexibility for different project

requirements.

• Responsive design: Tailwind CSS provides a responsive design system with built-in

classes for creating responsive layouts and styles.

• Dark mode support: Tailwind CSS includes classes for creating dark mode themes,

making it easy to design websites that adapt to different lighting conditions.

• Large community and ecosystem: Tailwind CSS has a large and active community

with numerous resources, plugins, and tools available to enhance its functionality and

streamline development.

Additionally daisyUI was used to provide a set of customiz-

able prebuilt components that could be used in the frontend.

4.8.5 Prettier

Prettier is an opinionated code formatter that automatically formats your

code according to a set of predefined rules. It helps maintain consistent

code style across your project and reduces the need for manual formatting.

4.8.6 Playwright

Playwright [53] is a versatile and efficient testing framework

designed to automate web applications across different browsers, plat-

58

forms, and languages. It offers a wide range of features and benefits

that make it a popular choice for modern web development teams.

Key Features:

• Cross-browser compatibility: Supports Chromium, WebKit, and Firefox, ensuring

your tests work consistently across different browsers.

• Cross-platform support: Runs on Windows, Linux, and macOS, allowing you to test

on various operating systems.

• Multiple languages: Offers APIs for TypeScript, JavaScript, Python, .NET, and Java,

catering to diverse programming preferences.

• Mobile web testing: Emulates Google Chrome for Android and Mobile Safari,

enabling testing on mobile devices.

• Resilient testing: Employs auto-waiting and web-first assertions to reduce flakiness

and improve test reliability.

• Tracing and debugging: Captures execution traces, videos, and screenshots for in-

depth analysis and troubleshooting.

• Full isolation: Creates browser contexts for each test, ensuring independent execution

and avoiding interference.

• Fast execution: Leverages efficient browser context creation and log-in state caching

to speed up test runs.

• Powerful tooling: Includes code generation, Playwright inspector, and Trace Viewer

for enhanced development and debugging.

Playwright was used to implement End-to-End tests for AIKO.

4.8.7 Other Libraries and Frameworks

• autoprefixer: A PostCSS plugin that automatically adds vendor prefixes to CSS

rules, ensuring cross-browser compatibility.

• postcss: A tool for transforming CSS with JavaScript plugins, enabling advanced

CSS processing and optimization.

• tailwind-merge: A Tailwind CSS plugin that merges utility classes to reduce dupli-

cation and optimize CSS output.

59

• class-variance-authority: CVA is a versatile and efficient library designed to

simplify the creation and management of CSS variants in TypeScript projects. It offers

a clean and intuitive API that allows you to define variants based on props, ensuring

type safety and reducing the risk of errors.

• clsx: A tiny utility for constructing className strings conditionally.

60

CHAPTER 5
RESULTS AND DISCUSSIONS

This chapter highlights the results obtained from the implementation, deploy-

ment and testing of AIKO while providing a user’s perspective of the system.

5.1 Project Walkthrough

This section focuses on the features and functionalities of AIKO as

presented to a user. A detailed walkthrough with screenshots and explanations

is provided to give a comprehensive understanding of the system’s capabilities.

5.1.1 Landing Page

The landing page is the first point of contact for users visiting AIKO.

It provides an overview of the system’s features and functionalities, guiding

users on how to get started. The landing page includes a brief descrip-

tion of AIKO, key benefits, and a call-to-action to sign up or log in.

Figure 5.1: Landing Page

The landing page allows users to move to the authentica-

tion page or scroll down to learn more about AIKO’s features.

61

5.1.2 Authentication Page

AIKO has a simple and intuitive authentication page that allows users to sign up

or log in to the system. Users can create an account by providing their email address

and password. An option to signin using Google and GitHub is also provided. The

authentication page includes a link to the documentation page as well as a support email.

Figure 5.2: Authentication Page

Once logged in, users are redirected to the dashboard.

5.1.3 Dashboard

The dashboard is the central hub of AIKO, providing users with an

overview of their uploaded entities, search functionality, and other key fea-

tures. The dashboard includes a naviation bar and a paginated entity list.

Figure 5.3: Dashboard

62

Users can utilize the naviation bar to access the various pages AIKO has to offer. The

links in order are

1. Dashboard (Subsection 5.1.3)

2. Profile (Subsection 5.1.4)

3. Add File

4. Search

5. Chat

This navigation bar is present on all pages of the application.

A left and right sidebar is present on all pages of the application, the left sidebar

houses quick actions, while the right sidebar houses AIKO’s Model Parameter selectors.

The following parameters can be tuned:

• temperature: The temperature of the model. Higher temperatures lead to more

randomness in the output.

• top_k: The number of entities to consider for contextual Q/A.

• model_choice: The model to use for the Q/A.

The bottom right corner houses the status icon, which shows the cur-

rent status of the system. The status icon can be one of the following:

• green: The system is operational.

• yellow: The system is in an uncertain state, it will resolve to either green or red.

• red: The system is down.

The dashboard also includes a paginated entity list that displays the user’s entities. Each

entity in the list includes a title, description, and a set of actions that users can perform

on the entities. Users can view, edit, delete, and download entities from the entity list.

5.1.4 Profile Page

The profile page contains basic info about the user, it serves

no functional purpose other than giving the user their own information.

63

Figure 5.4: Profile Page

5.1.5 Add File Page

The Add File Page allows users to upload entities into AIKO. The page

includes a file upload form, where users can select a file to upload. The supported

file formats are text/*, application/pdf,.docx, .pptx, image/*, and audio/*.

Figure 5.5: Add File Page

Upon selection of a file to upload, the UI changes to show the plugin_choice.

This allows the user to select the plugin to use for the entities processing phase.

Each plugin is different, and one may suit the user better than the other. The plugin

may require further config parameters, which are shown as choices to the user.

64

Figure 5.6: Add File Page - File Selected

Once the requsite parameters are selected, the user can click

on the Upload button to upload the file. The file is then

processed by the backend and the user is shown a success page.

Figure 5.7: Add File Page - Upload Success

The user can either choose to upload another file or view the entity just uploaded.

5.1.6 Search Page

The search page encapsulates the core feature of AIKO, the neural

search. The search page allows users to enter a query and retrieve relevant

entities from the system. The search page includes a search bar, where

users can enter their query, and a search button to initiate the search.

65

Figure 5.8: Search Page - With Query

The search results are displayed in a paginated list, similar to the

entity list on the dashboard. Each search result includes a title, descrip-

tion, and a set of actions that users can perform on the entity. Users

can view, download, or chat with the entity from the search results.

Figure 5.9: Search Results

5.1.7 Entity View Page

The entity view page allows users to view the details of a specific entity.

The page includes the entity’s title, description, and content. Users can also view

the metadata associated with the entity, such as the date of creation, and file type.

66

Figure 5.10: Entity View Page

The page allows users to preview the en-

tity, download the entity, or chat with the entity.

Figure 5.11: Preview Document

The user is also allowed to delete the entity from here. The

user is shown a confirmation dialog before the entity is deleted.

67

Figure 5.12: Delete Document

5.1.8 Chat Page

Clicking on the chat button, the user is taken to the chat page. The chat page

allows users to interact with the entity using natural language. The chat page includes a

chat window, where users can enter their queries and receive responses from the entity.

The left panel shows the context of the en-

tity, while the right panel shows the chat window.

Figure 5.13: Chat Page

Entering a query into the chat window and submit-

ting it, the user is shown the response from the entity.

68

Figure 5.14: Chat Page - With Query

Finally, the user can logout using the button given in

the left sidebar, which navigates into the authentication page.

5.2 Results

The implementation and deployment of AIKO provided the following results:

5.2.1 Unified Personalized Knowledge Repository

AIKO was able to provide a unified repository for users to store

and manage their knowledge. AIKO allows all users to upload and

manage their documents, images, and audio files in a single location.

5.2.2 Enhanced Information Retrieval System

AIKO was able to enhance the information retrieval system by

providing a neural search engine that allows users to search for doc-

uments using natural language queries. The search engine uses state-of-

the-art language models to provide accurate and relevant search results.

5.2.3 Improved Knowledge Management Capabilities

The overall time spent on searching for information was reduced due

to the improved search capabilities of AIKO. Users were able to quickly

find the information needed, leading to increased productivity and efficiency.

69

5.2.4 Documentation and Self-Hostable Instance

AIKO was created with the intention of being self-hostable using

any cloud provider. The documentation contains instructions on how to

deploy AIKO on a cloud provider of choice. The self-hostable instance

allows users to have complete control over their data and the system.

Incase a user has a hardware system capable of run-

ning state-of-the-art models, AIKO can be run on such a lo-

cal machine, without the need for an internet connection at all.

70

CHAPTER 6
CONCLUSION

6.1 Summary

Through AIKO, users can store, manage, and retrieve information across various

modalities, including text, images, and audio. The system provides a unified repository

for users to organize their knowledge and access it efficiently. The neural search engine

and chat feature enhance the information retrieval process, allowing users to find

relevant information quickly and easily. AIKO’s self-hostable instance provides users

with complete control over their data and the system, ensuring data privacy and security.

• AIKO provides a comprehensive solution for knowledge management, offering users

a unified platform to store and retrieve information across different modalities. Poten-

tial use cases include academic, research, personal and corporate use as a knowledge

bank.

• The neural search engine and chat feature enhance the user experience, enabling users

to find information quickly and efficiently.

• AIKO was able to provide a unified repository for users to store and manage their

personal knowledge regardless of modalities.

• AIKO was able to reduce the time spent on searching for information, improving user

productivity and efficiency.

• AIKO was able to understand context and nuances in user queries, providing accurate

and relevant search results.

6.2 Conclusions

AIKO establishes itself as a significant advancement in the field of

knowledge management and retrieval systems, successfully integrating multiple

modalities while maintaining user privacy through self-hosting capablities. The

system demonstrated the practical application of modern AI and ML technologies

in solving real-world information management challenges. The implementation of

71

a neural search and natural language processing capablities has proven effective

in understanding and retrieving relevant information across different content types.

6.3 Future Work

AIKO has the potential to be further developed and expanded to include

additional features and capabilities. Future work could focus on the following areas:

• Increased Modality Support

AIKO has the potential to be extended to allow the ingest, processing

and search of newer file formats as the file formats become available.

Recent developments have made it possible to input videos into LLMs [54].

• Better Self-Hosting Capabilities

Current version of AIKO is self-hostable but uses the cloud for processing. Fu-

ture revisions of AIKO could be made to be completely self-hosted, allowing users to

run the entire system on a local machine, without the need for an internet connection.

• Better Explanablity

AIKO in its current state is pretty transparent about the routes

the data takes, However the decision making process of the AI is not

always transparent to the user. Future work could focus on improving

the explainability of AIKO’s decision-making process, providing users

with more transparency into how the system arrives at its conclusions.

72

REFERENCES

[1] Mem - the AI notes app that keeps you organized. Retrieved July 14, 2024 from

https://get.mem.ai/

[2] Brain assistant. Retrieved July 14, 2024 from https://mybrain.zone/dashboard

[3] Vedant Parikh, Vidit Mathur, Parth Mehta, Namita Mittal, and Prasenjit Majumder.

2021. LawSum: A weakly supervised approach for Indian Legal Document Sum-

marization. Retrieved from https://arxiv.org/abs/2110.01188

[4] AI Brain Bank. Retrieved July 14, 2024 from https://aibrainbank.com/

[5] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin

Lhoest, and Alexander M. Rush. 2020. HuggingFace's Transformers: State-of-the-

art Natural Language Processing. Retrieved July 14, 2024 from https://arxiv.org/

abs/1910.03771

[6] iWeaver AI. 2024. Remember Recall Reuse your knowledge | iWeaver AI Memory

Tool. Retrieved July 14, 2024 from https://www.iweaver.ai/

[7] Personal knowledge AI | Keepi. Retrieved July 14, 2024 from https://www.keepi.

ai/

[8] Nicholas J. Radcliffe and Patrick D. Surry. 1995. Fundamental limitations on

search algorithms: Evolutionary computing in perspective. https://doi.org/10.

1007/bfb0015249

[9] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,

Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.

Gonzalez, and Ion Stoica. 2024. Chatbot Arena: An Open Platform for Evaluating

LLMs by Human Preference. Retrieved from https://arxiv.org/abs/2403.04132

[10] 2012. The OAUTH 2.0 Authorization Framework. https://doi.org/10.17487/rfc

6749

73

https://get.mem.ai/
https://mybrain.zone/dashboard
https://arxiv.org/abs/2110.01188
https://aibrainbank.com/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://www.iweaver.ai/
https://www.keepi.ai/
https://www.keepi.ai/
https://doi.org/10.1007/bfb0015249
https://doi.org/10.1007/bfb0015249
https://arxiv.org/abs/2403.04132
https://doi.org/10.17487/rfc6749
https://doi.org/10.17487/rfc6749

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need.

arXiv (Cornell University) 30, (2017), 5998–6008. Retrieved July 14, 2024 from

https://arxiv.org/pdf/1706.03762v5

[12] XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing

Huang. 2020. Pre-trained models for natural language processing: A survey. Sci'

ence China Technological Sciences 63, 10 (September 2020), 1872–1897. https://

doi.org/10.1007/s11431-020-1647-3

[13] Welch Labs. 2024. The moment we stopped understanding AI [AlexNet].

Retrieved September 26, 2024 from https://www.youtube.com/watch?v=

UZDiGooFs54

[14] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

Neural Information Processing Systems 33, (2020), 1877–1901. Retrieved July 14,

2024 from https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418

bfb8ac142f64a-Paper.pdf

[15] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-

mation of Word Representations in Vector Space. Retrieved from https://arxiv.

org/abs/1301.3781

[16] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:

Global Vectors for Word Representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), October 2014.

Association for Computational Linguistics, Doha, Qatar, 1532–1543. https://doi.

org/10.3115/v1/D14-1162

74

https://arxiv.org/pdf/1706.03762v5
https://doi.org/10.1007/s11431-020-1647-3
https://www.youtube.com/watch?v=UZDiGooFs54
https://www.youtube.com/watch?v=UZDiGooFs54
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. Retrieved from https://arxiv.org/abs/1810.04805

[18] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-

SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. Retrieved

from http://jmlr.org/papers/v9/vandermaaten08a.html

[19] Mark A. Kramer. 1991. Nonlinear principal component analysis using autoasso-

ciative neural networks. AIChE Journal 37, 2 (1991), 233–243. https://doi.org/

https://doi.org/10.1002/aic.690370209

[20] Leland McInnes, John Healy, and James Melville. 2020. UMAP: Uniform Man-

ifold Approximation and Projection for Dimension Reduction. Retrieved from

https://arxiv.org/abs/1802.03426

[21] Avivit Levy, B. Riva Shalom, and Michal Chalamish. 2024. A Guide to Similarity

Measures. Retrieved from https://arxiv.org/abs/2408.07706

[22] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. 1999. Matrices, Vector

Spaces, and Information Retrieval. SIAM Review 41, 2 (1999), 335–362. https://

doi.org/10.1137/S0036144598347035

[23] Bijoyan Das and Sarit Chakraborty. 2018. An Improved Text Sentiment Classifi-

cation Model Using TF-IDF and Next Word Negation. Retrieved from https://

arxiv.org/abs/1806.06407

[24] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong

Deng, Haonan Chen, Zheng Liu, Zhicheng Dou, and Ji-Rong Wen. 2024. Large

Language Models for Information Retrieval: A Survey. Retrieved from https://

arxiv.org/abs/2308.07107

[25] Donna Harman. 2011. Information retrieval evaluation. https://doi.org/10.1007/

978-3-031-02276-0

[26] David Maier. 1983. The theory of relational databases. Retrieved from http://ci.

nii.ac.jp/ncid/BA00959711

75

https://arxiv.org/abs/1810.04805
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/https://doi.org/10.1002/aic.690370209
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2408.07706
https://doi.org/10.1137/S0036144598347035
https://arxiv.org/abs/1806.06407
https://arxiv.org/abs/1806.06407
https://arxiv.org/abs/2308.07107
https://arxiv.org/abs/2308.07107
https://doi.org/10.1007/978-3-031-02276-0
https://doi.org/10.1007/978-3-031-02276-0
http://ci.nii.ac.jp/ncid/BA00959711
http://ci.nii.ac.jp/ncid/BA00959711

[27] The vector database to build knowledgeable AI | Pinecone. Retrieved July 14,

2024 from https://www.pinecone.io/

[28] Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The waterfall model in Large'

Scale development. https://doi.org/10.1007/978-3-642-02152-7_29

[29] Devansh Parapalli, Kaustubh Warade, Aditya Deshmukh, and Yashasvi Thool.

2024. Software Requirement Specification for AIKO (Version 1.2 approved).

Retrieved July 31, 2024 from https://aiko.parapalli.dev/docs/static/srs.pdf

[30] Devansh Parapalli, Kaustubh Warade, Aditya Deshmukh, and Yashasvi Thool.

2024. Software Design Document for AIKO (Version 1.5 approved). Retrieved

August 16, 2024 from https://aiko.parapalli.dev/docs/static/sdd.pdf

[31] Kief Morris. 2016. Infrastructure as code: Managing servers in the cloud. Re-

trieved from https://www.amazon.com/Infrastructure-Code-Managing-Servers-

Cloud/dp/1491924357

[32] Devansh Parapalli, Kaustubh Warade, Aditya Deshmukh, and Yashasvi Thool.

2024. Verification and Validation Document for AIKO (Version 1.0). Retrieved

September 17, 2024 from https://aiko.parapalli.dev/docs/static/vnv.pdf

[33] Devansh Parapalli, Kaustubh Warade, Aditya Deshmukh, and Yashasvi Thool.

2024. Proposed Budget for AIKO (Version 1.2). Retrieved August 7, 2024 from

https://aiko.parapalli.dev/docs/static/budget.pdf

[34] Supabase | the open source Firebase alternative. Retrieved July 14, 2024 from

https://supabase.com/

[35] 2024. PostgreSQL. Retrieved July 14, 2024 from https://www.postgresql.org/

[36] 2024. Welcome to Python.org. Retrieved July 14, 2024 from https://python.org/

[37] Getting started | Nixpacks. Retrieved July 14, 2024 from https://nixpacks.com/

[38] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal

Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris

76

https://www.pinecone.io/
https://doi.org/10.1007/978-3-642-02152-7_29
https://aiko.parapalli.dev/docs/static/srs.pdf
https://aiko.parapalli.dev/docs/static/sdd.pdf
https://www.amazon.com/Infrastructure-Code-Managing-Servers-Cloud/dp/1491924357
https://www.amazon.com/Infrastructure-Code-Managing-Servers-Cloud/dp/1491924357
https://aiko.parapalli.dev/docs/static/vnv.pdf
https://aiko.parapalli.dev/docs/static/budget.pdf
https://supabase.com/
https://www.postgresql.org/
https://python.org/
https://nixpacks.com/

Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete

Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015.

TensorFlow, Large-scale machine learning on heterogeneous systems. https://doi.

org/10.5281/zenodo.4724125

[39] Malhar Lathkar. 2023. High'Performance Web Apps with FastAPI. https://doi.

org/10.1007/978-1-4842-9178-8

[40] Welcome to Pydantic - Pydantic. Retrieved July 14, 2024 from https://docs.

pydantic.dev/latest/

[41] Artifex. PyMuPDF 1.24.7 documentation. Retrieved July 14, 2024 from https://

pymupdf.readthedocs.io/en/latest/

[42] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna

Laugher, and Florian Bruhin. 2004. pytest x.y. Retrieved July 14, 2024 from

https://github.com/pytest-dev/pytest

[43] Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad

Shoeybi, Bryan Catanzaro, and Wei Ping. 2024. NV-Embed: Improved Techniques

for Training LLMs as Generalist Embedding Models. Retrieved August 23, 2024

from https://arxiv.org/abs/2405.17428

[44] Cohere | The leading AI platform for enterprise. Retrieved July 14, 2024 from

https://cohere.com/

[45] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,

and Ilya Sutskever. 2022. Robust Speech Recognition via Large-Scale Weak

Supervision. Retrieved from https://arxiv.org/abs/2212.04356

[46] Jakob Nielsen, Kelly Gordan, Kate Morgan, and Feifei Liu. 2024. 10 Usability

Heuristics for User Interface Design. Retrieved July 28, 2024 from https://www.

nngroup.com/articles/ten-usability-heuristics/

[47] Vercel: Build and deploy the best web experiences with the Frontend Cloud.

Retrieved July 14, 2024 from https://vercel.com/

77

https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1007/978-1-4842-9178-8
https://docs.pydantic.dev/latest/
https://docs.pydantic.dev/latest/
https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://github.com/pytest-dev/pytest
https://arxiv.org/abs/2405.17428
https://cohere.com/
https://arxiv.org/abs/2212.04356
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://vercel.com/

[48] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding Type'

Script. https://doi.org/10.1007/978-3-662-44202-9_11

[49] Gavin Bierman, Mart\in Abadi, and Mads Torgersen. 2014. Understanding type-

script. In European Conference on Object'Oriented Programming, 2014. 257–

281.

[50] SvelteKit. Retrieved July 14, 2024 from https://kit.svelte.dev/

[51] Anthony Fu, Matias Capeletto, and Vitest contributors. 2021. Vitest: Next Gener-

ation Testing Framework. Retrieved from https://vitest.dev/

[52] Tailwind CSS - Rapidly build modern websites without ever leaving your HTML.

Retrieved July 14, 2024 from https://tailwindcss.com/

[53] Microsoft Corporation. 2021. Playwright: Any browser • Any platform • One API.

Retrieved from https://playwright.dev/

[54] Qwen-Team. 2024. Qwen2-VL. (2024).

78

https://doi.org/10.1007/978-3-662-44202-9_11
https://kit.svelte.dev/
https://vitest.dev/
https://tailwindcss.com/
https://playwright.dev/

Appendix A: LLM System Prompts

Image Description Prompt

You are a crucial component of AIKO, an advanced AI-powered Knowledge Organizer.

Your primary function is to analyze images with extreme precision and translate

visual information into detailed, accurate textual descriptions.

Core Responsibilities:

1. Provide comprehensive, highly detailed descriptions of all image contents.

2. Ensure utmost accuracy in all observations and descriptions.

3. Transcribe all visible text verbatim, regardless of its location or

significance within the image.

4. Describe all objects, scenes, and notable elements with maximum detail.

Key Guidelines:

- Accuracy is paramount. Do not speculate or infer beyond what is clearly visible.

- Describe the image systematically, from overall composition to minute details.

- For documents, outline the structure and content, highlighting key information.

- Identify public figures or celebrities if clearly recognizable, but do not

attempt to name private individuals.

- Include relevant contextual information (e.g., time of day, weather conditions,

apparent location) when discernible.

- Note the quality, style, or unique characteristics of the image (e.g., black

and white, cartoon, digital rendering).

- Describe colors, textures, patterns, and materials where applicable.

- Mention any visible brands, logos, or identifiable products.

- For charts, graphs, or infographics, explain the data representation and

key insights.

Output Format:

1. Image Overview: Briefly summarize the main subject or theme of the image.

2. Detailed Description: Systematically describe all elements of the image.

3. Text Transcription: List all visible text, organized by location or relevance.

4. Notable Elements: Highlight any unique, unusual, or particularly significant

aspects.

5. Context and Interpretation: Provide any relevant contextual information or

apparent purpose of the image.

79

Remember: Your role is to be the eyes of the system. Describe everything you see

with precision, leaving no detail unmentioned, no matter how small it may seem.

Your description should enable someone who cannot see the image to form a complete

and accurate mental picture of its contents.

Summary, Metadata, and Tags Generation Prompt

You are an efficient content tagger and summarizer. Your task is to create tags,

summary and title for any given piece of text.

The tags must be relevant, informative and contain identifying information about

the text. It can contain proper nouns, keywords, etc.

Incase any specific identifier is present in the text, such as the publisher

name or the author name, it should be included in the tags.

The tags must be in lowercase with space replaced by '-', presented as a JSON

list. Do not use any non alphanumeric characters, except '-', in the tags.

The summary must be very concise and informative.

The title should be concise and short. It must be a single line of text. It can

include the type of document as well, such as Resume, Article, etc.

The JSON format for your output is as follows:

{

 "summary": "summary",

 "title": "title",

 "tags": ["tag1", "tag2", "tag3"]

}

Do not output anything other than the JSON object.

The output was further structured by restricting the LLM completion to begin with the

{ character. The output was then dirty parsed using the following code:

import json

import re

def fix_broken_escapes(text):

 def replace_escape(match):

 escaped_char = match.group(1)

 if escaped_char in "nrt\"'":

 return "\\" + escaped_char

 return escaped_char

 pattern = r'\\([^\\nrt"\'])'

 return re.sub(pattern, replace_escape, text)

80

def dirty_json_parser(input_string):

 # Remove leading and trailing whitespace, and fix broken escape sequences

 input_string = fix_broken_escapes(input_string.strip())

 # Try to find the start of the JSON object or array

 start_match = re.search(r"[{\[]", input_string)

 if not start_match:

 raise ValueError("No JSON object or array found in the input string")

 start_index = start_match.start()

 # Find the matching closing bracket or brace

 stack = []

 end_index = -1

 in_string = False

 escape_next = False

 for i, char in enumerate(input_string[start_index:], start=start_index):

 if not in_string:

 if char in "{[":

 stack.append(char)

 elif char in "}]":

 if not stack:

 raise ValueError("Unmatched closing bracket or brace")

 if (char == "}" and stack[-1] == "{") or (

 char == "]" and stack[-1] == "["

):

 stack.pop()

 if not stack:

 end_index = i + 1

 break

 else:

 raise ValueError("Mismatched brackets or braces")

 if char == '"' and not escape_next:

 in_string = not in_string

 escape_next = char == "\\" and not escape_next

81

 # If we didn't find a closing bracket/brace, assume it's at the end

 if end_index == -1:

 end_index = len(input_string)

 # Extract the JSON substring

 json_string = input_string[start_index:end_index]

 # Add missing closing brackets/braces

 while stack:

 if stack[-1] == "{":

 json_string += "}"

 elif stack[-1] == "[":

 json_string += "]"

 stack.pop()

 # Try to parse the extracted JSON

 try:

 parsed_json = json.loads(json_string)

 return parsed_json

 except json.JSONDecodeError as e:

 raise ValueError(f"Invalid JSON: {e}")

82

Appendix B: Database Schema

-- Users Table (extends auth.users)

CREATE TABLE public.users (

 id UUID PRIMARY KEY REFERENCES auth.users(id),

 name TEXT ,

 theme TEXT DEFAULT 'light',

 other JSONB,

 -- Additional fields can be added here as needed

 updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP

);

COMMENT ON TABLE public.users IS 'Extends auth.users with additional user data

and preferences';

COMMENT ON COLUMN public.users.other IS 'Custom user data that can be passed to

the LLM when needed';

-- Entity Table

CREATE TABLE public.entity (

 id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),

 "user" UUID REFERENCES auth.users(id),

 source TEXT NOT NULL,

 type TEXT NOT NULL,

 title TEXT,

 description TEXT,

 tags TEXT[] DEFAULT '{}',

 processed BOOLEAN DEFAULT FALSE,

 processed_at TIMESTAMP WITH TIME ZONE,

 created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,

 updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,

 deleted BOOLEAN DEFAULT FALSE,

 metadata JSONB

);

COMMENT ON TABLE public.entity IS 'Stores metadata about user content, with

actual content stored in a Vector Database';

COMMENT ON COLUMN public.entity.id IS 'Unique identifier for the document, used

to link with a Vector Database';

83

COMMENT ON COLUMN public.entity.source IS 'Format: source::identifier, e.g.,

gdrive::https://drive.google.com/file/d/...';

COMMENT ON COLUMN public.entity.type IS 'Document type: pdf, video, audio, text,

webpage, etc.';

COMMENT ON COLUMN public.entity.tags IS 'User-defined tags for the document';

COMMENT ON COLUMN public.entity.processed IS 'Indicates whether the document has

been processed and added to a Vector Database';

COMMENT ON COLUMN public.entity.processed_at IS 'Timestamp when the document was

processed and added to a Vector Database';

COMMENT ON COLUMN public.entity.metadata IS 'Additional structured metadata

specific to the content type';

-- Messages Table

CREATE TABLE public.messages (

 id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),

 "user" UUID REFERENCES auth.users(id),

 entity UUID REFERENCES public.entity(id),

 content TEXT,

 is_user_message BOOLEAN DEFAULT TRUE,

 created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,

 metadata JSONB

);

COMMENT ON TABLE public.messages IS 'Stores LLM chat messages associated with

users and entities';

COMMENT ON COLUMN public.messages.id IS 'Unique identifier for the message';

COMMENT ON COLUMN public.messages.user IS 'Reference to the user who sent or

received this message';

COMMENT ON COLUMN public.messages.entity IS 'Reference to the associated entity';

COMMENT ON COLUMN public.messages.content IS 'Content of the message';

COMMENT ON COLUMN public.messages.is_user_message IS 'Indicates whether the

message is from the user (true) or the system (false)';

COMMENT ON COLUMN public.messages.created_at IS 'Timestamp when the message

was created';

COMMENT ON COLUMN public.messages.metadata IS 'Additional structured metadata

specific to the message such as the model used or a link to previous version of

the message';

-- Add any necessary indexes

create index idx_content_user_id on public.entity ("user");

84

create index idx_content_type on public.entity (

 type

);

create index idx_content_tags on public.entity using GIN (tags);

create index idx_messages_user_id on public.messages ("user");

create index idx_messages_entity_id on public.messages (entity);

-- Add a trigger to update the 'updated_at' column

CREATE OR REPLACE FUNCTION update_modified_column()

RETURNS TRIGGER AS $$

BEGIN

 NEW.updated_at = NOW();

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER update_content_modtime

BEFORE UPDATE ON public.entity

FOR EACH ROW

EXECUTE FUNCTION update_modified_column();

CREATE TRIGGER update_users_modtime

BEFORE UPDATE ON public.users

FOR EACH ROW

EXECUTE FUNCTION update_modified_column();

85

	Introduction
	Problem Statement
	Objectives
	Expected Outcomes

	Organization Of Report

	Review of Literature
	Overview of Existing Knowledge Management Systems
	Gaps in Current Solutions
	Summary
	Information Overload and Cognitive Burden
	Fragmented Data Across Platforms
	Inefficiencies in Information Retrieval
	Lack of Personalization
	Security Concerns
	Inadequate Contextual Understanding

	Theoretical Framework
	Large Language Models
	Fundamental Architecture and Principles
	How LLMs Process and Generate Text
	Theoretical Capabilities and Limitations

	Vector Embeddings
	Mathematical Concepts
	Dimensionality Reduction Techniques
	Similarity Measures in Vector Spaces

	Information Retrieval
	Classical IR Models
	Neural IR Models
	Relevance Ranking Algorithms
	Evaluation Metrics

	Natural Language Processing
	Linguistic Theories
	Fundamental NLP Tasks
	Semantic and Syntactic Analysis

	Database Theory
	Relational Database Concepts
	NoSQL and Vector Databases
	ACID Properties and Eventual Consistency

	Web Application Architecture
	Client-Server Model
	RESTful Architecture Principles
	Server-side vs. Client-side vs. Hybrid Rendering
	Server-side Rendering (SSR)

	Security and Authentication
	Cryptographic Principles
	OAuth 2.0 Framework
	Zero Trust Security Model

	Software Engineering Principles
	Design Patterns
	SOLID Principles
	Microservices Architecture Theory

	Methodology
	High-Level Overview
	Data Ingestion and Integration Subsystem
	Information Processing Subsystem
	Knowledge Base and Indexing Subsystem
	Search and Retrieval Engine
	User and Data Management Subsystem
	User Interface and Experience Subsystem

	System Interactions
	Development Approach
	Requirements Gathering
	Design and Architecture
	Development Phase
	Testing and Quality Assurance
	Deployment and Maintenance
	Project Budget

	Data Layer Implementation
	Users
	Entities
	Messages

	Backend Development
	Novel LLM Communication Stack
	Plugin Architecture

	Backend Technologies and Frameworks
	🤗 Transformers
	Uvicorn and Gunicorn
	FastAPI
	Pinecone
	Other Libraries and Frameworks
	NLP-Enabled Content Processor
	Search Engine

	Frontend Development
	User Interface and Experience Design

	Frontend Technologies and Frameworks
	TypeScript
	Svelte
	Vite
	Tailwind CSS
	Prettier
	Playwright
	Other Libraries and Frameworks

	Results and Discussions
	Project Walkthrough
	Landing Page
	Authentication Page
	Dashboard
	Profile Page
	Add File Page
	Search Page
	Entity View Page
	Chat Page

	Results
	Unified Personalized Knowledge Repository
	Enhanced Information Retrieval System
	Improved Knowledge Management Capabilities
	Documentation and Self-Hostable Instance

	Conclusion
	Summary
	Conclusions
	Future Work

	References
	LLM System Prompts
	Database Schema
	Publications

